【題目】有一個同學(xué)家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機(jī)選取5天,統(tǒng)計(jì)出氣溫與熱奶茶銷售杯數(shù),如表:

氣溫

0

4

12

19

27

熱奶茶銷售杯數(shù)

150

132

130

104

94

(Ⅰ)求熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程精確到0.1),若某天的氣溫為,預(yù)測這天熱奶茶的銷售杯數(shù);

(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率.

參考數(shù)據(jù):.

參考公式:,

【答案】(1) ﹣2.0x+146.8,預(yù)測氣溫為15oC,熱奶茶銷售約117杯;(2)

【解析】

1)由表格中數(shù)據(jù)計(jì)算、,求出回歸系數(shù),再寫出回歸方程,

利用回歸方程求得對應(yīng)的值;

2)利用列舉法求出基本事件數(shù),再計(jì)算所求的概率值.

(1)由表格中數(shù)據(jù)可得,

=×(0+4+12+19+27)=12.4,=×(150+132+130+104+94)=122;

==≈﹣2.0,

==122﹣(﹣2.0)×12.4=146.8;

∴熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程為

=﹣2.0x+146.8;

當(dāng)x=15時, =﹣2.0×15+146.8=116.8≈117,

即預(yù)測氣溫為15oC,這天熱奶茶銷售約117杯;

(2)記表中的第1天到第5天為A、B、c、d、e,其中銷售杯數(shù)大于130的有A、B,

任取兩天有AB,Ac,Ad,Ae,Bc,Bd,Be,cd,ce,de共10種情況;

其中至少有一天銷售杯數(shù)大于130有AB,Ac,Ad,Ae,Bc,Be共7種情況;

∴所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率為P=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,則其長軸長為__________;若的右焦點(diǎn), 的上頂點(diǎn), 上位于第一象限內(nèi)的動點(diǎn),則四邊形的面積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點(diǎn)在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是(

A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形四點(diǎn)坐標(biāo)為A(0,-2),C(4,2),B(4,-2),D(0,2).

(1)求對角線所在直線的方程;

(2)求矩形外接圓的方程;

(3)若動點(diǎn)為外接圓上一點(diǎn),點(diǎn)為定點(diǎn),問線段PN中點(diǎn)的軌跡是什么,并求出該軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)K,過點(diǎn)K作圓(x﹣5)2+y2=9的兩條切線,切點(diǎn)為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點(diǎn),且 (其中O為坐標(biāo)原點(diǎn)).
①求證:直線AB必過定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
②過點(diǎn)Q作AB的垂線與拋物線交于G,D兩點(diǎn),求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= (a>b>0)的圖象是曲線C.

(1)在如圖的坐標(biāo)系中分別做出曲線C的示意圖,并分別標(biāo)出曲線C與x軸的左、右交點(diǎn)A1 , A2
(2)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過A2作A2R⊥A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:等比數(shù)列{}中,公比為q,且a1=2,a4=54,等差數(shù)列{}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.

(I)求數(shù)列{}的通項(xiàng)公式;

(II)求數(shù)列{}的前n項(xiàng)和的公式;

(III)設(shè),,其中n=1,2,…,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn= .求n.

查看答案和解析>>

同步練習(xí)冊答案