1.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S1,S3,S4成等差數(shù)列,則數(shù)列{an}的公比為$\frac{1+\sqrt{5}}{2}$.

分析 設(shè)正項(xiàng)等比數(shù)列{an}的公比為q,由于S1,S3,S4成等差數(shù)列,可得2S3=S1+S4,q=1不成立,可得$2\frac{{a}_{1}({q}^{3}-1)}{q-1}$=a1+$\frac{{a}_{1}({q}^{4}-1)}{q-1}$,化簡(jiǎn)解出即可.

解答 解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q,
∵S1,S3,S4成等差數(shù)列,
∴2S3=S1+S4,
q=1不成立,
∴$2\frac{{a}_{1}({q}^{3}-1)}{q-1}$=a1+$\frac{{a}_{1}({q}^{4}-1)}{q-1}$,
化為q3-2q2+1=0,
(q-1)(q2-q-1)=0,q≠1,q>0,
解得q=$\frac{1+\sqrt{5}}{2}$.
故答案為:$\frac{1+\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若sin(π+α)=-$\frac{1}{2}$,則sin(4π-α)的值是( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}是公比為q的單調(diào)遞增的等比數(shù)列,且a1+a4=9,a2a3=8,則a1=1,q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3}),g(x)=\sqrt{3}cos2x$
(1)設(shè)h(x)=f(x)g(x),求函數(shù)h(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)若一動(dòng)直線x=t與函數(shù)y=f(x),y=g(x)的圖象分別交于M,N兩點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知不等式ax-1>0的解集{x|x<-1},不等式ax2+bx+c>0的解集是{x|-2<x<1},則a+b+c的值為( 。
A.2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.李莊村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收管理費(fèi)2元,月用電不超過(guò)30度每度0.5元,超過(guò)30度時(shí),超過(guò)部分按每度0.6元.
方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)L(x)元與用電量x(度)間的函數(shù)關(guān)系;
(2)李剛家九月份按方案一交費(fèi)35元,問(wèn)李剛家該月用電多少度?
(3)李剛家月用電量在什么范圍時(shí),選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.對(duì)于函數(shù)f(x)(x∈R),假如實(shí)數(shù)x0滿足f(x0)=x0為f(x)的“不動(dòng)點(diǎn)”;若實(shí)數(shù)x0滿足f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”,記函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=3x-8,求集合A和B;
(2)判斷集合A和B的關(guān)系,并說(shuō)明理由;
(3)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)已知4x+x-1=6,求$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值;
(2)若log32=m,log53=n,用m,n表示log415.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=$\sqrt{-{x^2}+2x+8}$的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案