若數(shù)列{an}滿足a1=1,
an
an+an+1
=2,(n∈N)
,則此數(shù)列的通項an=
(-
1
2
)n-1
(-
1
2
)n-1
分析:將條件
an
an+an+1
=2,(n∈N)
,進行化簡得an=2an+2an+1,即-an=2an+1,從而得到數(shù)列是等比數(shù)列,然后利用等比數(shù)列的通項公式進行求解即可.
解答:解:因為
an
an+an+1
=2,(n∈N)
,所以an=2an+2an+1,即-an=2an+1,所以an+1=-
1
2
an
,
所以數(shù)列{an}是以a1=1為首項,公比q=-
1
2
的等比數(shù)列,
所以an=1?(-
1
2
)
n-1
=(-
1
2
)
n-1
,n∈N
故答案為:(-
1
2
)n-1
點評:本題主要考查等比數(shù)列的通項公式,利用條件判斷數(shù)列是等比數(shù)列是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•煙臺二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數(shù)m的最小取值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習(xí)冊答案