數(shù)列的通項(xiàng)為,則該數(shù)列的各項(xiàng)之和為

[  ]

A.無(wú)窮大
B.1
C.
D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•長(zhǎng)寧區(qū)二模)定義:項(xiàng)數(shù)為偶數(shù)的數(shù)列,若奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,則稱該數(shù)列為“對(duì)偶數(shù)列”.
(1)若項(xiàng)數(shù)為20項(xiàng)的“對(duì)偶數(shù)列”{an},前4項(xiàng)為1,1,3,
1
2
,求該數(shù)列的通項(xiàng)公式及20項(xiàng)的和;
(2)設(shè)項(xiàng)數(shù)為2m(m∈N*)的“對(duì)偶數(shù)列”{an}前4項(xiàng)為1,1,3,
1
2
,試求該數(shù)列前n(1≤n≤2m,n∈N*)項(xiàng)的和Sn;
(3)求證:等差數(shù)列{an}(an≠0)為“對(duì)偶數(shù)列”當(dāng)且僅當(dāng)數(shù)列{an}為非零常數(shù)數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:教材完全解讀 高中數(shù)學(xué) 必修5(人教B版課標(biāo)版) 人教B版課標(biāo)版 題型:013

數(shù)列的通項(xiàng)為an,則數(shù)9

[  ]

A.不是該數(shù)列中的項(xiàng)

B.是該數(shù)列中的第5項(xiàng)

C.是該數(shù)列中的第9項(xiàng)

D.是該數(shù)列中的第16項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列中,,,.

(1)求證:是等差數(shù)列;并求數(shù)列的通項(xiàng)公式;

(2)假設(shè)對(duì)于任意的正整數(shù)、,都有,則稱該數(shù)列為“域收斂數(shù)列”. 試判斷: 數(shù)列,是否為一個(gè)“域收斂數(shù)列”,請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分6分,第2小題滿分7分,第3小題滿分5分.

  在數(shù)列(p為非零常數(shù)),則稱數(shù)列為“等差比”數(shù)列,p叫數(shù)列的“公差比”.

已知數(shù)列滿足,判斷該數(shù)列是否為等差比數(shù)列?

已知數(shù)列是等差比數(shù)列,且公差比,求數(shù)列的通項(xiàng)公式;

(3)記為(2)中數(shù)列的前n項(xiàng)的和,證明數(shù)列也是等差比數(shù)列,并求出公差比p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市長(zhǎng)寧區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

定義:項(xiàng)數(shù)為偶數(shù)的數(shù)列,若奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,則稱該數(shù)列為“對(duì)偶數(shù)列”.
(1)若項(xiàng)數(shù)為20項(xiàng)的“對(duì)偶數(shù)列”{an},前4項(xiàng)為1,1,3,,求該數(shù)列的通項(xiàng)公式及20項(xiàng)的和;
(2)設(shè)項(xiàng)數(shù)為2m(m∈N*)的“對(duì)偶數(shù)列”{an}前4項(xiàng)為1,1,3,,試求該數(shù)列前n(1≤n≤2m,n∈N*)項(xiàng)的和Sn;
(3)求證:等差數(shù)列{an}(an≠0)為“對(duì)偶數(shù)列”當(dāng)且僅當(dāng)數(shù)列{an}為非零常數(shù)數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案