精英家教網 > 高中數學 > 題目詳情

在正方體的面對角線上運動,則下列四個命題:

①三棱錐的體積不變;②∥平面;
;④平面平面.
其中正確的命題序號是            .

①②④

解析試題分析:
對于①,容易證明AD1∥BC1,從而BC1∥平面AD1C,故BC1上任意一點到平面AD1C的距離均相等,所以以P為頂點,平面AD1C為底面,則三棱錐A-D1PC的體積不變;正確;對于②,連接A1B,A1C1容易證明A1C1∥AD1且相等,由于①知:AD1∥BC1,所以BA1C1∥面ACD1,從而由線面平行的定義可得;正確;對于③由于DC⊥平面BCB1C1,所以DC⊥BC1平面,若DP⊥BC1,則DC與DP重合,與條件矛盾;錯誤;對于④,連接DB1,容易證明DB1⊥面ACD1,從而由面面垂直的判定知:正確.故答案為:①②④
考點:直線與平面平行的判定直線與平面垂直的判定平面與平面垂直的判定.
點評:本題考查三棱錐體積求法中的等體積法;線面平行、垂直的判定,要注意使用轉化的思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

在正方體ABCD—A1B1C1D1各個表面的對角線中,與直線異面的有__________條

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知各頂點都在同一個球面上的正四棱錐高為3,體積為6,則這個球的表面積是_____.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

正四棱錐P-ABCD的所有棱長都相等,則側棱與底面所成的角為           .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

如圖,在平行四邊ABCD中,,,若將其沿BD折成直二面角 A-BD-C,則三棱錐A—BCD的外接球的體積為_______.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側棱CC1的中點,則異面直線AB1和BM所成的角的大小是______________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

如圖所示的三棱錐A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若點P為△ABC內的動點滿足直線DP與平面ABC所成角的正切值為2,則點P在△ABC內所成的軌跡的長度為              

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

正三棱錐中,,的中點分別為,且,則正三棱錐外接球的表面積為                    .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

如圖,已知四面體P-ABC中,PA=PB=PC,且AB=AC,∠BAC=90°,則異面直線PA與BC所成的角為________.

查看答案和解析>>

同步練習冊答案