設(shè)數(shù)列{an}的前n項和Sn=2n+1-2,數(shù)列{bn}滿足bn=
1
(n+1)log2an

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)n=1時,a1=S1=2;n≥2時an=Sn-Sn-1=2n,由此能求出數(shù)列{an}的通項公式.
(2)由bn=
1
(n+1)log22n
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂項求和法能求出數(shù)列{bn}的前n項和Tn
解答: 解:(1)n=1時,a1=S1=2,…(2分)
Sn=2n+1-2,
Sn-1=2n-2(n≥2)
an=Sn-Sn-1=2n(n≥2),
當n=1時也成立,
∴數(shù)列{an}的通項公式為:an=2n.n∈N*.…(6分)
(2)∵an=2n,bn=
1
(n+1)log2an

bn=
1
(n+1)log22n

=
1
n(n+1)
=
1
n
-
1
n+1
…(9分)
Tn=1-
1
2
+
1
2
-
1
3
+
+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
. …(12分)
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的通項公式的求法,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若l,m,n是互不相同的空間直線,α,β是不重合的平面,下列命題正確的是( 。
A、若α∥β,l?α,n?β,則l∥n
B、若α⊥β,l?α,則l⊥β
C、若l⊥n,m⊥n,則l∥m
D、若l⊥α,l∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,且S2=
3
2
a2-1,S3=
3
2
a3-1.
(1)求數(shù)列{an}的通項公式;
(2)在an于an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列,記數(shù)列{
1
dn
)的前n項和為Tn,求使得
8
5
Tn+
n
3n-1
40
27
成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且滿足Sn=2-an,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=1+2log 
1
2
an,數(shù)列{
1
bnbn+1
}的前n項和為Tn.求證:Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)定義在[-1,1]上,且在定義域內(nèi)是減函數(shù),若f(a2-a-1)+f(4a-5)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-2,且α是第二象限的角,求sinα和cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7名同學(xué)排隊照相.
(1)若排成一排照,甲、乙、丙三人必須相鄰,有多少種不同的排法?(用數(shù)字作答)
(2)若排成一排照,7人中有4名男生,3名女生,女生不能相鄰,有多少種不面的排法?(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標系xOy中,直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程:ρ=2cosθ.
(Ⅰ)將直線l的參數(shù)方程化為普通方程,曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)判斷直線l和曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+x-6=0},B={x||x|<3},C={x|x2-2x+1=0},求(A∩B)∪C.

查看答案和解析>>

同步練習(xí)冊答案