【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.

在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( )

A. 2號學生進入30秒跳繩決賽 B. 5號學生進入30秒跳繩決賽

C. 8號學生進入30秒跳繩決賽 D. 9號學生進入30秒跳繩決賽

【答案】B

【解析】在這10名學生中,進入立定跳遠決賽的有8人,

∴編號為1,2,3,4,5,6,7,8的學生進入立定跳遠決賽.

又同時進入立定跳遠決賽和30秒跳繩決賽的有6人,

∴編號為3,6,7的學生必進入30秒跳繩決賽,

剩下的1,2,4,5,8號學生的成績分別為:63, ,60,63, 有且只有3人進入30秒跳繩決賽,

∴成績?yōu)?3的同學必進入30秒跳繩決賽.選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓為坐標原點,動點在圓外,過點作圓的切線,設切點為.

(1)若點運動到處,求此時切線的方程;

(2)求滿足的點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過點,圖象與P點最近的一個最高點坐標為.

1)求函數(shù)的單調遞增區(qū)間;

2)若,求函數(shù)的值域;

3)若方程上有兩個不相等的實數(shù)根,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M與直線相切,且與定圓C外切,

求動圓圓心M的軌跡方程.

求動圓圓心M的軌跡上的點到直線的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為的函數(shù)滿足:,且對于任意實數(shù),恒有,當時,.

(1)求的值,并證明當時,

(2)判斷函數(shù)上的單調性并加以證明;

(3)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍本.扎比瓦卡,俄語意為“進球者”.某廠生產“扎比瓦卡”的固定成本為15000元,每生產一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測算,每個銷售價格滿足函數(shù),其中x是“扎比瓦卡”的月產量(每月全部售完).

1)將利潤表示為月產量的函數(shù);

2)當月產量為何值時,該廠所獲利潤最大?最大利潤是多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,且b1a11,b3a4b1b2b3a3a4.

(1)求數(shù)列{an},{bn}的通項公式;

(2)cnanbn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設P是拋物線y2=4x上的一個動點,F(xiàn)為拋物線的焦點,記點P到點A(-1,1)的距離與點P到直線x= - 1的距離之和的最小值為M,若B(3,2),記|PB|+|PF|的最小值為N,則M+N= ______________

查看答案和解析>>

同步練習冊答案