已知函數(shù)f(x)=log3x+2 (x∈[1,9]),則函數(shù)y=[f(x)]2+f(x2)的最大值是( 。
分析:先求函數(shù)的定義域,要使函數(shù)有意義需1≤x≤9且1≤x2≤9,解得x∈[1,3],在將所求函數(shù)展開(kāi)為關(guān)于整體log3x的函數(shù),利用換元法,將函數(shù)轉(zhuǎn)化為二次函數(shù)求最值問(wèn)題,再利用配方法求二次函數(shù)最大值即可
解答:解:函數(shù)y=[f(x)]2+f(x2)的定義域?yàn)閧x|1≤x≤9且1≤x2≤9}=[1,3]
且y=[f(x)]2+f(x2)=(log3x+2)2+log3(x2)+2
=(log3x)2+6log3x+6
設(shè)t=log3x,∵x∈[1,3],∴t∈[0,1]
∴y=t2+6t+6=(t+3)2-3在[0,1]上單調(diào)遞增
∴y≤1+6+6=13
故選 A
點(diǎn)評(píng):本題考查了復(fù)合函數(shù)定義域的求法,換元法求函數(shù)的最值,對(duì)數(shù)函數(shù)和二次函數(shù)的值域的求法,轉(zhuǎn)化化歸的思想方法,本題易忘記求定義域而使得最值求錯(cuò)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案