有一塊鐵皮零件,它的形狀是由邊長為40cm的正方形CDEF截去一個三角形ABF所得的五邊形ABCDE,其中AF長等于12cm,BF長等于10cm,如圖所示.現(xiàn)在需要截取矩形鐵皮,使得矩形相鄰兩邊在CD,DE上.請問如何截取,可以使得到的矩形面積最大?(圖中單位:cm)
延長MP交FB于G點,設(shè)PG=x,則PM=40-x,
∵PGAF,
∴△BPG△BAF,
BG
10
=
x
12
,解得BG=
5
6
x,
∴NP=CG=30+
5
6
x,
∴S矩形PNDM=PM•PN=(30+
5
6
x)(40-x)
=-
5
6
x2+
10
3
x+1200=-
5
6
(x-2)2+1200+
10
3
(0≤x≤12),
∴當(dāng)x=2時,函數(shù)有最大值為1203
1
3
,
此時DN=38cm,DM=
95
3
cm.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=
x+2,x≤-3
x2,-3<x<3
2x,x≥3
,若f(x)=3,則x=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的偶函數(shù)f(x),當(dāng)x∈(-∞,0)時f(x)=(
1
2
)x
,則f(log28)等于( 。
A.3B.8C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=
x2
1+x2
,則f(1)+f(2)+f(3)+f(4)+f(5)+f(
1
2
)+f(
1
3
)+f(
1
4
)+f(
1
5
)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)在R上單調(diào)遞增的是( 。
A.y=|x|B.y=lgxC.y=x
1
2
D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=min{2
x
,|x-2|
},其中min{a,b}=
a,a≤b
b,a>b
,若動直線y=m與函數(shù)y=f(x)的圖象有三個不同的交點,它們的橫坐標(biāo)分別為x1,x2,x3,則x1•x2•x3的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(2n-n2)x2n2-n,(n∈N*)在(0,+∞)是增函數(shù).
(1)求f(x)的解析式;
(2)設(shè)g(x)=
f2(x)+m2
f(x)
(m>0)
,試判斷g(x)在(0,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是定義在(-3,3)上的奇函數(shù),當(dāng)0<x<3時,如圖所示,那么不等式f(x)cosx<0的解集是(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,.現(xiàn)有下列命題:
;②;③.其中的所有正確命題的序號是(   )
A.①②③B.②③C.①③D.①②

查看答案和解析>>

同步練習(xí)冊答案