【題目】已知長方體ABCD﹣A1B1C1D1中,底面ABCD為正方形,DD1⊥平面ABCD,AB=4,AA1=2,點E1在棱C1D1上,且D1E1=3.

(Ⅰ)在棱CD上確定一點E,使得直線EE1∥平面D1DB,并寫出證明過程;
(Ⅱ)若動點F在正方形ABCD內(nèi),且AF=2,請說明點F的軌跡,探求E1F長度的最小值并求此時直線E1F與平面ABCD所成角的正弦值.

【答案】解:(Ⅰ)連接D1B,DB,當DE=3時,直線EE1∥平面D1DB,

證明:∵DE∥D1E1,DE=D1E1,∴四邊形DEE1D1為平行四邊形,

∵EE1∥DD1,DD1平面D1DB,EE1平面D1DB,

∴直線EE1∥平面D1DB;

(Ⅱ)∵動點F在正方形ABCD內(nèi),且AF=2,∴點F的軌跡為以A為圓心,以2為半徑的 圓周.

連接AE,則AE= =5,∴EF的最短距離為AE﹣AF=3,

∵E1F= ,∴E1F的長度最小值為 =

∵EE1⊥平面ABCD,∴∠E1FE為線E1F與平面ABCD所成的角

∴sin∠E1FE= = = ,即直線E1F與平面ABCD所成的角的正弦值為


【解析】(Ⅰ)由題意可知連接D1B,DB,當DE=3時,根據(jù)線面平行的判定定理可證直線EE1∥平面D1DB。
(Ⅱ)由題意可得動點F在正方形ABCD內(nèi),且AF=2,∴點F的軌跡為以A為圓心,以2為半徑的 圓,連接AE,EF的最短距離為AE﹣AF=3,根據(jù)勾股定理可得E1F的長度最小值為.再由線面角的定義找出∠E1FE為線E1F與平面ABCD所成的角,由可求得正弦值.
【考點精析】認真審題,首先需要了解棱柱的結(jié)構(gòu)特征(兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在 中, ,點 邊上,且

(I)求 ;
(II)求 的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的(產(chǎn)品凈重,單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,下列命題中:①樣本中凈重大于或等于98克并且小于102克的產(chǎn)品的個數(shù)是60;②樣本的眾數(shù)是101;③樣本的中位數(shù)是 ; ④樣本的平均數(shù)是101.3.
正確命題的代號是(寫出所有正確命題的代號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對100名六年級學生進行了問卷調(diào)查得到如圖聯(lián)表.且平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在全部100人中隨機抽取1人,抽到肥胖的學生的概率為0.8.

常喝

不常喝

合計

肥胖

60

不肥胖

10

合計

100


(1)求肥胖學生的人數(shù)并將上面的列聯(lián)表補充完整;
(2)是否有95%的把握認為肥胖與常喝碳酸飲料有關(guān)?說明你的理由. 附:參考公式:x2=

P(x2≥x0

0.05

0.025

0.010

0.005

0.001

x0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 過點(1,e).
(1)求y=f(x)的單調(diào)區(qū)間;
(2)當x>0時,求 的最小值;
(3)試判斷方程f(x)﹣mx=0(m∈R且m為常數(shù))的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin(2x+ )圖象上的每個點的橫坐標縮短為原來的一半,縱坐標不變,再將所得圖象向左平移 個單位得到函數(shù)g(x)的圖象.在g(x)圖象的所有對稱中心中,離原點最近的對稱中心為( )
A.(﹣ ,0)
B.( ,0)
C.(﹣ ,0)
D.( ,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 a,b 為實數(shù),且 a>0,b>0 ,
(1)求證: ;
(2)求(5-2a)2+4b2+(a-b)2 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 的三個內(nèi)角 A,B,C 成等差數(shù)列,且 a,b,c 分別為角 A,B,C 的對邊,求證:(a+b)-1+(b+c)-1=3(a+b+c)-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣1﹣lnx(a∈R).
(1)當a=1時,求曲線在點(1,0)處的切線方程;
(2)求函數(shù)f(x)在區(qū)間 上的最小值.

查看答案和解析>>

同步練習冊答案