如圖所示,三棱柱ABC-A1B1C1,D是BC的中點,D1是B1C1的中點.
求證:(1)A1B∥平面AC1D;
(2)平面A1BD1∥平面AC1D.
考點:平面與平面平行的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)A1C交AC1于點E,連結(jié)DE,連結(jié)ED,由已知條件推導(dǎo)出A1B∥ED,由此能證明A1B∥平面AC1D.
(2)由已知和得BD1∥C1D,A1D1∥AD,從而BD1∥平面AC1D,A1D1∥平面AC1D.由此能證明平面A1BD1∥平面AC1D.
解答: (1)證明:如圖,連結(jié)A1C交AC1于點E,連結(jié)DE,
∵四邊形A1ACC1是平行四邊形,
∴E是A1C的中點.連結(jié)ED,
∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,
∴A1B∥ED.
∵A1B不包含于平面AC1D,ED?平面AC1D,
∴A1B∥平面AC1D.
(2)證明:∵E是A1C的中點,
∴D是BC的中點.
又∵D1是B1C1的中點,∴BD1∥C1D,A1D1∥AD,
∴BD1∥平面AC1D,A1D1∥平面AC1D.
又A1D1∩BD1=D1,∴平面A1BD1∥平面AC1D.
點評:本題考查直線與平面平行的證明,考查平面與平面平行的證明,是中檔題,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個密碼有9位,由4個自然數(shù)、3個“A”以及1個“a”和1個“b”組成,其中A與A不相鄰,a和b不相鄰,數(shù)字可隨意排列,且數(shù)字之積為6,這樣的密碼有(  )個.
A、10200
B、13600
C、40800
D、81600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(2,2]上的函數(shù)f(x)滿足f(x+2)=
4
f(x)+2
,當(dāng)x∈[0,2],f(x)=x,若g(x)=f(x)-mx-m有兩個不同零點,則實數(shù)m的取值范圍是( 。
A、0<m≤
2
3
或-6-4
2
<m<0
B、0<m≤
2
3
或m<-6+4
2
C、0<m≤
2
3
或m<-6-4
2
D、0<m≤
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
2+3i
i
的虛部是( 。
A、-2iB、iC、1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-x-1,g(x)=
1
2
x2
(1)求函數(shù)f(x)的極大值;
(2)定義運算:
.
ab
dc
.
=ac-bd,其中a,b,c,d∈R
①若M(x)=
.
kf(x)
1g(x)
.
,k∈R,討論函數(shù)M(x)的單調(diào)性;②設(shè)函數(shù)F(x)=f(x)+x+1,已知函數(shù)H(x)是F(x)的反函數(shù),若關(guān)于x的不等式
.
mH(x+1)
H(F(x)+1)H(x+1)-1
.
<1(m∈R)在x∈(0,+∞)上恒成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

編寫程序框圖計算:12-22+32-42+…+992-1002

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(3+x)-loga(3-x)(a>1).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)當(dāng)x∈[
1
3
,
1
2
]時,f(x)最大值為1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,底面ABCD是邊長為2的菱形,且∠BAD=
π
3
,分別以△ABD與△CBD為底面作相同的正三棱錐E-ABD與F-CBD,且∠AEB=
π
2

(1)求證:EF∥平面ABCD;
(2)求平面的EBD與平面FBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,點(1,
3
4
a)在橢圓上.直線x+y-m=0與橢圓恰有一個公共點.
(Ⅰ)求m的值;
(Ⅱ)已知O為坐標(biāo)原點,P為橢圓上的動點,作正方形OPMN(O,P,M,N按順時針方向排列),求動點N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案