解方程:0≤
|x+5|
x2+1
<5
考點:其他不等式的解法
專題:不等式的解法及應用
分析:對不等式進行配方,轉化為一元二次不等式進行求解即可.
解答: 解:∵0≤
|x+5|
x2+1
<5
,
∴平方得(x+5)2<25(x2+1),
即12x2-5x>0,
∴x<0或x>
12
5
,
即不等式的解集為{x|x<0或x>
12
5
}.
點評:本題主要考查不等式的解法,根據絕對值的性質,利用平方是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-4x=0,直線l:x+my-3=0,則( 。
A、l與C相交
B、l與C相切
C、l與C相離
D、以上三個選項均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、4+4
3
B、
4
3
3
C、12
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知α為第三象限角,且sinα=-
5
13
,求cosα,tanα的值.
(2)已知sin(π-α)=
1
3
,求
sin(α-π)cos(2π-α)sin(
π
2
-α)
cos(-π-α)sin(-π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p:實數(shù)x滿足(x-3a)(x-a)<0,其中a>0,q:實數(shù)x滿足
x2-3x≤0
x2-x-2>0

(1)當a=1,p且q為真時,求實數(shù)x的取值范圍;
(2)若?p是?q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程
x2
2k-1
+
y2
k-1
=1
表示橢圓;q:方程
x2
4-k
+
y2
k-3
=1
表示雙曲線.若“p或q”為真,“p且q”為假,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡求值:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
992
)(1-
1
1002
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C的對邊分別為a,b,c,且asinB=
3
3
bcosA.
(Ⅰ)求A;
(Ⅱ)設a=
2
,S為△ABC的面積,求S+2cosBcosC的最大值,并指出此時B的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=2,求下列各式的值:
(1)
3sinα-5cosα
cosα+2sinα
;
(2)2sin2α-3cos2α.

查看答案和解析>>

同步練習冊答案