【題目】已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線 與圓相交于兩點,求實數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由
【答案】(Ⅰ)(Ⅱ)(Ⅲ)存在實數(shù)
【解析】試題分析:
(Ⅰ)設(shè)出圓心坐標(biāo),利用點到直線的距離等于半徑可得,則圓的方程為.
(Ⅱ)由題意得到關(guān)于實數(shù)a的不等式,求解不等式可得實數(shù)a的取值范圍是;
(Ⅲ)由題意討論可得存在實數(shù)滿足題意.
試題解析:
(Ⅰ)設(shè)圓心為().由于圓與直線相切,且半徑為,所以 ,即.因為為整數(shù),故.
故所求圓的方程為.
(Ⅱ), 則或,又故
(Ⅲ)設(shè)符合條件的實數(shù)存在,由于,則直線的斜率為
的方程為,即
由于垂直平分弦AB,故圓心必在上,
所以,解得。由于,故存在實數(shù)
使得過點的直線垂直平分弦AB
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
(Ⅲ)將函數(shù)的圖象向右平移()個單位后所得函數(shù)的圖象關(guān)于原點中心對稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校一個校園景觀的主題為“托起明天的太陽”,其主體是一個半徑為5米的球體,需設(shè)計一個透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計.軸截面如圖所示,設(shè).(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用表示圓柱的高;
(2)實踐表明,當(dāng)球心和圓柱底面圓周上的點的距離達(dá)到最大時,景觀的觀賞效
果最佳,求此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓M恒過點(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動直線l過點P(0,﹣2),且與點M的軌跡交于A、B兩點,點C與點B關(guān)于y軸對稱,求證:直線AC恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷售的價格為5元/千克時,每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并做出了散點圖,發(fā)現(xiàn)樣本點并沒有分布在某個帶狀區(qū)域內(nèi),兩個變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型① 與模型;② 作為產(chǎn)卵數(shù)y和溫度x的回歸方程來建立兩個變量之間的關(guān)系.
溫度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù)y/個 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中 , ,zi=lnyi , ,
附:對于一組數(shù)據(jù)(μ1 , ν1),(μ2 , ν2),…(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計分別為: ,
(1)根據(jù)表中數(shù)據(jù),分別建立兩個模型下y關(guān)于x的回歸方程;并在兩個模型下分別估計溫度為30°C時的產(chǎn)卵數(shù).(C1 , C2 , C3 , C4與估計值均精確到小數(shù)點后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計算分別為 .,請根據(jù)相關(guān)指數(shù)判斷哪個模型的擬合效果更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com