【題目】已知拋物線的焦點(diǎn)為,點(diǎn)上異于頂點(diǎn)的任意一點(diǎn),過的直線于另一點(diǎn),交軸正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.

1)求的方程;

2)若直線,且相切于點(diǎn),試問直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.

【答案】(1) (2) 直線過定點(diǎn).

【解析】

1)設(shè),拋物線的焦點(diǎn)為,由,可得,從而,再由點(diǎn)橫坐標(biāo)與中點(diǎn)橫坐標(biāo)相同可求得

2)設(shè),可得,由,可設(shè)直線的方程為,由它與拋物線相切可求得,也即得出點(diǎn)坐標(biāo),求出直線方程,觀察得其過定點(diǎn).注意分類,即按直線斜率是否存在分類討論.

1)拋物線的焦點(diǎn),設(shè),則的中點(diǎn)坐標(biāo)為

,∴,解得,或(舍),

,∴,解得,

∴拋物線方程為.

2)由(1)知,,設(shè),

,則,由,即

∴直線的斜率,∵,故設(shè)直線的方程為

聯(lián)立方程組,得,

∵直線與拋物線相切,∴,

設(shè),則,

當(dāng)時(shí),,直線的方程為,

,∴直線的方程為,∴直線過定點(diǎn),

當(dāng)時(shí),直線方程為,經(jīng)過定點(diǎn),

綜上,直線過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,記.

1)求b1,b2的值;

2)證明:數(shù)列{bn}是等比數(shù)列;

3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合.若的非空子集中奇數(shù)的個(gè)數(shù)大于偶數(shù)的個(gè)數(shù),則稱是“好的”.試求的所有“好的”子集的個(gè)數(shù)(答案寫成最簡結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,,沿對角線折起至,使得二面角,連結(jié)。

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距,汽車從甲地勻速行駛到乙地,速度不超過.已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(單位:)的平方成正比,且比例系數(shù)為,固定部分為.

1)把全程運(yùn)輸成本(元)表示為速度的函數(shù),并求出當(dāng),時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最;

2)隨著汽車的折舊,運(yùn)輸成本會發(fā)生一些變化,那么當(dāng)元,此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會使得運(yùn)輸成本最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面為直角梯形,,分別為中點(diǎn),且.

(1)平面;

(2)若為線段上一點(diǎn),且平面,求的值;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口在港口的正東120海里處,小島在港口的北偏東的方向,且在港口北偏西的方向上,一艘科學(xué)考察船從港口出發(fā),沿北偏東方向以20海里/小時(shí)的速度駛離港口.一艘給養(yǎng)快艇從港口60海里/小時(shí)的速度駛向小島,在島轉(zhuǎn)運(yùn)補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時(shí)出發(fā),補(bǔ)給裝船時(shí)間為1小時(shí).

1)求給養(yǎng)快艇從港口到小島的航行時(shí)間;

2)給養(yǎng)快艇駛離港口后,最少經(jīng)過多少小時(shí)能和科考船相遇?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】恩格爾系數(shù)(記為)是指居民的食物支出占家庭消費(fèi)總支出的比重.國際上常用恩格爾系數(shù)來衡量一個(gè)國家和地區(qū)人民生活水平的狀況.聯(lián)合國對消費(fèi)水平的規(guī)定標(biāo)準(zhǔn)如下表:

家庭類型

貧窮

溫飽

小康

富裕

最富裕

實(shí)施精準(zhǔn)扶貧以來,根據(jù)對某山區(qū)貧困家庭消費(fèi)支出情況(單位:萬元)的抽樣調(diào)查,2018年每個(gè)家庭平均消費(fèi)支出總額為2萬元,其中食物消費(fèi)支出為1.2萬元預(yù)測2018年到2020年每個(gè)家庭平均消費(fèi)支出總額每年的增長率約是30%,而食物消費(fèi)支出平均每年增加0.2萬元,預(yù)測該山區(qū)的家庭2020年將處于( )

A.貧困水平B.溫飽水平C.小康水平D.富裕水平

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè)曲線在原點(diǎn)處切線與直線垂直,則a=______.

(2)已知等差數(shù)列中,已知,則=________________.

(3)若函數(shù),則__________

(4)曲線與直線軸圍成的圖形的面積為__________

查看答案和解析>>

同步練習(xí)冊答案