(本小題滿分14分)設橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于下表中:
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究和是否總相等?若相等,請給出證明,若不相等,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
.已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知橢圓經過點,且其右焦點與拋物線的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經過點與橢圓相交于A、B兩點,與拋物線相交于C、D兩點.求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心是坐標原點,焦點在x軸上,離心率為,又橢圓上任一點到兩焦點的距離和為,過點M(0,)與x軸不垂直的直線交橢圓于P、Q兩點.
(1)求橢圓的方程;
(2)在y軸上是否存在定點N,使以PQ為直徑的圓恒過這個點?若存在,求出N的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題16分)設雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)
已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線于兩點.
證明:以線段為直徑的圓恒過軸上的定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設分別是橢圓的左,右焦點。
(1)若是第一象限內該橢圓上的一點,且·=求點的坐標。
(2)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com