用數(shù)學(xué)歸納法證明“時,從“到”時,左邊應(yīng)增添的式子是( ).
A. | B. | C. | D. |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)
運行 次數(shù)n | 輸出y的值 為1的頻數(shù) | 輸出y的值 為2的頻數(shù) | 輸出y的值 為3的頻數(shù) |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
運行 次數(shù)n | 輸出y的值 為1的頻數(shù) | 輸出y的值 為2的頻數(shù) | 輸出y的值 為3的頻數(shù) |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用數(shù)學(xué)歸納法證明:“1+a+a2+ +an+1= (a≠1,n∈N*)”在驗證n=1時,左端計算所得的項為( )
A.1 | B.1+a |
C.1+a+a2 | D.1+a+a2+a3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
圖1,2,3,4分別包含1,5,13和25個互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第個圖包含______個互不重疊的單位正方形。
圖1 圖2 圖3 圖4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
①由“若a,b,c∈R,則(ab)c=a(bc)”類比“若a、b、c為三個向量,則(a·b)c=a(b·c)”;
②在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
③在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”;
上述三個推理中,正確的個數(shù)為( )
A.0 | B.1 | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:“若整系數(shù)一元二次方程有有理根,那么中至少有一個是偶數(shù)時,下列假設(shè)中正確的是
A.假設(shè)都是偶數(shù) |
B.假設(shè)都不是偶數(shù) |
C.假設(shè)至多有一個是偶數(shù) |
D.假設(shè)至多有兩個是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:“若a,,能被5整除,則a,b中至少有一個能被5整除”,那么假設(shè)的內(nèi)容是( )
A.a(chǎn),b都能被5整除 | B.a(chǎn),b都不能被5整除 |
C.a(chǎn),b有一個能被5整除 | D.a(chǎn),b有一個不能被5整除 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com