【題目】已知直線l:y=kx+b,(0<b<1)和圓O:相交于A,B兩點(diǎn).
(1)當(dāng)k=0時,過點(diǎn)A,B分別作圓O的兩條切線,求兩條切線的交點(diǎn)坐標(biāo);
(2)對于任意的實(shí)數(shù)k,在y軸上是否存在一點(diǎn)N,滿足?若存在,請求出此點(diǎn)坐標(biāo);若不存在,說明理由.
【答案】(1);(2)存在,.
【解析】
(1)求出交點(diǎn)坐標(biāo),由過切點(diǎn)的半徑與切線垂直得切線斜率從而得切線方程,兩切線方程聯(lián)立方程組可解得交點(diǎn)坐標(biāo);
(2)假設(shè)存在滿足題意,設(shè),由已知得,
由直線方程與圓方程聯(lián)立 消元后應(yīng)用韋達(dá)定理得,代入,由恒等式知識可得.
(1)把代入圓方程解得,所以,
圓上過點(diǎn)的切線為,由得,
方程為,化簡得:,
同理過點(diǎn)的切線方程是,
兩方程聯(lián)立可得兩直線交點(diǎn)坐標(biāo)為;
(2)假設(shè)軸上存在點(diǎn)滿足題意,設(shè),,
則, ,
,整理得,①
由得,
,,代入①式并整理得,此式對任意實(shí)數(shù)都成立,∴.
故軸點(diǎn)的點(diǎn)滿足.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“若,則x,y互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若,則有實(shí)根”的逆否命題;
④“直角三角形有兩個角是銳角”的逆命題;
其中真命題為( )
A.①②B.②③C.①③D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)在時取得極值,當(dāng)時,求使得恒成立的實(shí)數(shù)的取值范圍;
(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解今年某校高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校報(bào)考飛行員的總?cè)藬?shù);
(2)以這所學(xué)校的樣本數(shù)據(jù)來估計(jì)全省的總體數(shù)據(jù),若從全省報(bào)考飛行員的同學(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過60公斤的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查觀眾對電影“復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度,研究人員在某電影院隨機(jī)抽取了1000名觀眾作調(diào)查,所得結(jié)果如下所示,其中不喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局的觀眾占被調(diào)查觀眾總數(shù)的.
男性觀眾 | 女性觀眾 | 總計(jì) | |
喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局 | 400 | ||
不喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局 | 200 | ||
總計(jì) |
(Ⅰ)完善上述列聯(lián)表;
(Ⅱ)是否有99.9%的把握認(rèn)為觀眾對電影“復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度與性別具有相關(guān)性?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣2y+1=0和拋物線E:y2=2px(p>0),圓C與拋物線E的準(zhǔn)線交于M、N兩點(diǎn),△MNF的面積為p,其中F是E的焦點(diǎn).
(1)求拋物線E的方程;
(2)不過原點(diǎn)O的動直線l交該拋物線于A,B兩點(diǎn),且滿足OA⊥OB,設(shè)點(diǎn)Q為圓C上任意一動點(diǎn),求當(dāng)動點(diǎn)Q到直線l的距離最大時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲與乙午覺醒來后,發(fā)現(xiàn)自己的手表因故停止轉(zhuǎn)動,于是他們想借助收音機(jī),利用電臺整點(diǎn)報(bào)時確認(rèn)時間.
(1)求甲等待的時間不多于10分鐘的概率;
(2)求甲比乙多等待10分鐘以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程.
(1)設(shè),方程有三個不同實(shí)根,求的取值范圍;
(2)求證:是方程有三個不同實(shí)根的必要不充分條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com