【題目】已知直線ly=kx+b,(0<b<1)和圓O相交于A,B兩點(diǎn).

1)當(dāng)k=0時,過點(diǎn)A,B分別作圓O的兩條切線,求兩條切線的交點(diǎn)坐標(biāo);

2)對于任意的實(shí)數(shù)k,在y軸上是否存在一點(diǎn)N,滿足?若存在,請求出此點(diǎn)坐標(biāo);若不存在,說明理由.

【答案】1;(2)存在,.

【解析】

1)求出交點(diǎn)坐標(biāo),由過切點(diǎn)的半徑與切線垂直得切線斜率從而得切線方程,兩切線方程聯(lián)立方程組可解得交點(diǎn)坐標(biāo);

2)假設(shè)存在滿足題意,設(shè),由已知得,

由直線方程與圓方程聯(lián)立 消元后應(yīng)用韋達(dá)定理得,代入,由恒等式知識可得

1)把代入圓方程解得,所以,

上過點(diǎn)的切線為,由,

方程為,化簡得:,

同理過點(diǎn)的切線方程是,

兩方程聯(lián)立可得兩直線交點(diǎn)坐標(biāo)為;

2)假設(shè)軸上存在點(diǎn)滿足題意,設(shè),,

,

,整理得,①

,,代入①式并整理得,此式對任意實(shí)數(shù)都成立,∴

軸點(diǎn)的點(diǎn)滿足

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個命題:

,則xy互為相反數(shù)的逆命題;

全等三角形的面積相等的否命題;

,則有實(shí)根的逆否命題;

直角三角形有兩個角是銳角的逆命題;

其中真命題為(

A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若時,求函數(shù)在點(diǎn)處的切線方程;

2)若函數(shù)時取得極值,當(dāng)時,求使得恒成立的實(shí)數(shù)的取值范圍;

3)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面.已知,.

1)證明:平面

2)證明:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為123,其中第2小組的頻數(shù)為12

1)求該校報(bào)考飛行員的總?cè)藬?shù);

2)以這所學(xué)校的樣本數(shù)據(jù)來估計(jì)全省的總體數(shù)據(jù),若從全省報(bào)考飛行員的同學(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過60公斤的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查觀眾對電影復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度,研究人員在某電影院隨機(jī)抽取了1000名觀眾作調(diào)查,所得結(jié)果如下所示,其中不喜歡復(fù)仇者聯(lián)盟4”的結(jié)局的觀眾占被調(diào)查觀眾總數(shù)的.

男性觀眾

女性觀眾

總計(jì)

喜歡復(fù)仇者聯(lián)盟4”的結(jié)局

400

不喜歡復(fù)仇者聯(lián)盟4”的結(jié)局

200

總計(jì)

(Ⅰ)完善上述列聯(lián)表;

(Ⅱ)是否有99.9%的把握認(rèn)為觀眾對電影復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度與性別具有相關(guān)性?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+2x2y+10和拋物線Ey22pxp0),圓C與拋物線E的準(zhǔn)線交于M、N兩點(diǎn),MNF的面積為p,其中FE的焦點(diǎn).

1)求拋物線E的方程;

2)不過原點(diǎn)O的動直線l交該拋物線于A,B兩點(diǎn),且滿足OAOB,設(shè)點(diǎn)Q為圓C上任意一動點(diǎn),求當(dāng)動點(diǎn)Q到直線l的距離最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲與乙午覺醒來后,發(fā)現(xiàn)自己的手表因故停止轉(zhuǎn)動,于是他們想借助收音機(jī),利用電臺整點(diǎn)報(bào)時確認(rèn)時間.

(1)求甲等待的時間不多于10分鐘的概率;

(2)求甲比乙多等待10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程.

(1)設(shè),方程有三個不同實(shí)根,求的取值范圍;

(2)求證:是方程有三個不同實(shí)根的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊答案