【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
【答案】(1)(2)
【解析】試題分析:(1)由左焦點(diǎn)為,右頂點(diǎn)為D(2,0),得到橢圓的半長(zhǎng)軸a,半焦距c,再求得半短軸b,最后由橢圓的焦點(diǎn)在x軸上求得方程;(2)首先設(shè)所求點(diǎn)為M(x,y),借助于中點(diǎn)性質(zhì)得到P點(diǎn)坐標(biāo)用x,y表示,將P點(diǎn)代入橢圓方程從而得到中點(diǎn)的軌跡方程
試題解析:(1)由已知得橢圓的半長(zhǎng)軸a=2,半焦距c=,則半短軸b=1.
又橢圓的焦點(diǎn)在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為
(2)設(shè)線段PA的中點(diǎn)為M(x,y),點(diǎn)P的坐標(biāo)是(x0,y0),
由點(diǎn)P在橢圓上,得,
∴線段PA中點(diǎn)M的軌跡方程是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F2,且|F1F2|=2,點(diǎn)(1, )在橢圓C上。
(1)求橢圓C的方程;
(2)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知P點(diǎn)到兩定點(diǎn)D(﹣2,0),E(2,0)連線斜率之積為- .
(1)求證:動(dòng)點(diǎn)P恒在一個(gè)定橢圓C上運(yùn)動(dòng);
(2)過(guò) 的直線交橢圓C于A,B兩點(diǎn),過(guò)O的直線交橢圓C于M,N兩點(diǎn),若直線AB與直線MN斜率之和為零,求證:直線AM與直線BN斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù) 在 處的切線方程;
(2)設(shè) ,討論函數(shù) 的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為 .
(1)若F是線段CD的中點(diǎn),證明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是奇函數(shù),
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)的單調(diào)性并用定義法加以證明;
(3)若函數(shù)在上的最小值為,求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com