【題目】如圖所示,在△ABC中,AB的中點(diǎn)為O,且OA=1,點(diǎn)D在AB的延長(zhǎng)線上,且 .固定邊AB,在平面內(nèi)移動(dòng)頂點(diǎn)C,使得圓M與邊BC,邊AC的延長(zhǎng)線相切,并始終與AB的延長(zhǎng)線相切于點(diǎn)D,記頂點(diǎn)C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標(biāo)原點(diǎn)如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)動(dòng)直線l交曲線Γ于E、F兩點(diǎn),且以EF為直徑的圓經(jīng)過(guò)點(diǎn)O,求△OEF面積的取值范圍.

【答案】解:(Ⅰ)依題意得AB=2,BD=1,設(shè)動(dòng)圓M與邊AC的延長(zhǎng)線相切于T1 , 與邊BC相切于T2 , 則AD=AT1 , BD=BT2 , CT1=CT2所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2
所以點(diǎn)C軌跡Γ是以A,B為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,且挖去長(zhǎng)軸的兩個(gè)頂點(diǎn).則曲線Γ的方程為
(Ⅱ)由于曲線Γ要挖去長(zhǎng)軸兩個(gè)頂點(diǎn),所以直線OE,OF斜率存在且不為0,所以可設(shè)直線

,同理可得: ;
所以
又OE⊥OF,所以
令t=k2+1,則t>1且k2=t﹣1,所以 =
,所以 ,所以 ,
所以 ,所以 ,
所以△OEF面積的取值范圍為

【解析】(Ⅰ)確定點(diǎn)C軌跡Γ是以A,B為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,且挖去長(zhǎng)軸的兩個(gè)頂點(diǎn),即可求曲線Γ的方程;(Ⅱ)可設(shè)直線 ,進(jìn)而表示面積,即可求△OEF面積的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一直角墻角,兩邊的長(zhǎng)度足夠長(zhǎng),若P處有一棵樹(shù)與兩墻的距離分別是4m和am(0<a<12),不考慮樹(shù)的粗細(xì).現(xiàn)用16m長(zhǎng)的籬笆,借助墻角圍成一個(gè)矩形花圃ABCD.設(shè)此矩形花圃的最大面積為u,若將這棵樹(shù)圍在矩形花圃內(nèi),則函數(shù)u=f(a)(單位m2)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在中,內(nèi)角,的對(duì)邊分別為,,,且,證明:

(2)已知結(jié)論:在直角三角形中,若兩直角邊長(zhǎng)分別為,斜邊長(zhǎng)為,則斜邊上的高.若把該結(jié)論推廣到空間:在側(cè)棱互相垂直的四面體中,若三個(gè)側(cè)面的面積分別為,,底面面積為,則該四面體的高,,之間的關(guān)系是什么?(用,,表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個(gè)最低點(diǎn)為M( ).

(1)求f(x)的解析式及單調(diào)遞增區(qū)間;

(2)當(dāng)x∈[0,]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀右面的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( 。

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了14名女生和6名男生,這20名學(xué)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),記成績(jī)不小于80分者為等,小于80分者為等.

(1)求女生成績(jī)的中位數(shù)及男生成績(jī)的平均數(shù);

(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?

(3)在(2)問(wèn)的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在中,內(nèi)角,的對(duì)邊分別為,,,且,證明:;

(2)已知結(jié)論:在直角三角形中,若兩直角邊長(zhǎng)分別為,,斜邊長(zhǎng)為,則斜邊上的高.若把該結(jié)論推廣到空間:在側(cè)棱互相垂直的四面體中,若三個(gè)側(cè)面的面積分別為,,,底面面積為,則該四面體的高,,之間的關(guān)系是什么?(用,表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次趣味校園運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三代表隊(duì)人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過(guò)程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就座,其中高二代表隊(duì)有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng).求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;

(3)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎(jiǎng),則該代表中獎(jiǎng);若電腦顯示謝謝,則不中獎(jiǎng),求該代表中獎(jiǎng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案