平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值.
(1)由題意
a
=(3,2),
b
=(-1,2),
c
=(4,1)

3
a
+
b
-2
c
=(0,6)?
|3
a
+
b
-2
c
|
=6
(2)由題意得,
a
+k
c
=(4k+3,k+2),2
b
-
a
=(-5,2)

(
a
+k
c
)⊥(2
b
-
a
)
?-5(4k+3)+2(k+2)=0?k=-
11
18
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2)
,
b
=(-1,2)
,
c
=(4,1)
,回答下列三個問題:
(1)試寫出將
a
b
c
表示的表達式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值;
(3)若向量
d
滿足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)給定三個向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)
(
a
+k
c
)
(2
a
-
b
)
,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求|3
a
-
c
|
(2)若(
a
+k
c
)∥(2
b
-
a
)
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)給定三個向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)

(1)求|2
a
+
b
-
c
|;
(2)若(
a
+k
c
)∥(2
a
-
b
)
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值.

查看答案和解析>>

同步練習冊答案