【題目】三國時(shí)期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股方圓圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股方圓圖”中,四個(gè)全等的直角三角形與中間的小正方形拼成一個(gè)邊長為2的大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,飛鏢落在小正方形內(nèi)的概率是( )

A. B. C. D.

【答案】A

【解析】分析首先根據(jù)直角三角形,解出對(duì)應(yīng)的小正方形的邊長,分別求出大正方形和小正方形的面積,即陰影部分的面積,之后根據(jù)幾何概型的求法,飛鏢落在小正方形區(qū)域的概率就是陰影區(qū)域的面積與總面積的比值,即可得結(jié)果.

詳解觀察這個(gè)圖可知大正方形的邊長為2,總面積為4,

而陰影區(qū)域的邊長為,面積為

故飛鏢落在陰影區(qū)域的概率為,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)函數(shù);②f(x)在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有( ) ①f(x)=x2(x≥0);
②f(x)=ex(x∈R);
③f(x)= (x≥0);
④f(x)=
A.①②③④
B.①②④
C.①③④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)2500元,已知每生產(chǎn)x件這樣的產(chǎn)品需要再增加可變成本C(x)=200xx3(),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤最大,該廠應(yīng)生產(chǎn)多少件這種產(chǎn)品?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2α+ )=(
A.
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校600名文科學(xué)生參加了425日的三調(diào)考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、外語情況,利用隨機(jī)數(shù)表法從抽取100名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,將學(xué)生編號(hào)為000,001,002,…599

12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76

55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30

16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

(1)若從第6行第7列的數(shù)開始右讀,請(qǐng)你一次寫出最先抽出的5個(gè)人的編號(hào)(上面是摘自隨機(jī)數(shù)表的第4行到第7行);

(2)抽出的100名學(xué)生的數(shù)學(xué)、外語成績?nèi)缦卤恚?/span>

外語

優(yōu)

及格

數(shù)學(xué)

優(yōu)

8

m

9

9

n

11

及格

8

9

11

若數(shù)學(xué)成績優(yōu)秀率為35%,求m,n的值;

(3)在外語成績?yōu)榱嫉膶W(xué)生中,已知m≥12,n≥10,求數(shù)學(xué)成績優(yōu)比良的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4一1:幾何證明選講 如圖,C是以AB為直徑的半圓O上的一點(diǎn),過C的直線交直線AB于E,交過A點(diǎn)的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列結(jié)論正確的有( )

A. 函數(shù)的最大值為2;

B. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

C. 函數(shù)的圖象左移個(gè)單位可得函數(shù)的圖象;

D. 函數(shù)的圖象與函數(shù)的圖象關(guān)于軸對(duì)稱;

E. 若實(shí)數(shù)使得方程上恰好有三個(gè)實(shí)數(shù)解,,則一定有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求證: 函數(shù)是偶函數(shù);

(2)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有且僅有個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx,g(x)=(2﹣a)(x﹣1)﹣2f(x). (Ⅰ)當(dāng)a=1時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)F(x)=|f(x)|+ (b>0).對(duì)任意x1 , x2∈(0,2],x1≠x2 , 都有 <﹣1,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案