【題目】已知函數(shù),其中

)求的單調(diào)區(qū)間;

)若在上存在,使得成立,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)函數(shù)的單調(diào)區(qū)間與導數(shù)的符號相關,而函數(shù)的導數(shù)為,故可以根據(jù)的符號討論導數(shù)的符號,從而得到函數(shù)的單調(diào)區(qū)間.(2)若不等式 上有解,那么在上, .但上的單調(diào)性不確定,故需分 三種情況討論.

解析:(1),

①當時,在, 上單調(diào)遞增;

②當時,在;在;所以上單調(diào)遞減,在上單調(diào)遞增.

綜上所述,當時, 的單調(diào)遞增區(qū)間為,當時, 的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(2)若在上存在,使得成立,則上的最小值小于.

①當,即時,由(1)可知上單調(diào)遞增, 上的最小值為,由,可得

②當,即時,由(1)可知上單調(diào)遞減, 上的最小值為,由,可得 ;

③當,即時,由(1)可知上單調(diào)遞減,在上單調(diào)遞增, 上的最小值為,因為,所以,即,即,不滿足題意,舍去.

綜上所述,實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
1)若曲線在點處的切線垂直于軸,求實數(shù)的值;

2時,求函數(shù)的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體的棱長為1,線段上有兩個動點,則下列結論中正確結論的序號是__________

;

②直線與平面所成角的正弦值為定值

③當為定值,則三棱錐的體積為定值;

④異面直線所成的角的余弦值為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) .

(1)當時,討論的單調(diào)性;

(2)若函數(shù)有兩個極值點,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的導函數(shù)為

若直線與曲線恒相切于同一定點,求的方程;

⑵ 若,求證:當時, 恒成立;

⑶ 若當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,ABBC,E、F分別為A1C1和BC的中點

(1)求證:平面ABE平面B1BCC1;

(2)求證:C1F//平面ABE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=(1+x)m+(1+2x)n(mn∈N*)的展開式中x的系數(shù)為11.

(1)求x2的系數(shù)取最小值時n的值;

(2)當x2的系數(shù)取得最小值時,求f(x)展開式中x的奇次冪項的系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))有兩個極值點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對的邊,且滿足.

1)求角的大;

2)若,且,求的值.

查看答案和解析>>

同步練習冊答案