函數(shù)f(x)=log0.6(6x-x2)的單調(diào)遞增區(qū)間為


  1. A.
    (0,3)
  2. B.
    (3,+∞)
  3. C.
    (3,6)
  4. D.
    (6,+∞)
C
分析:由已知中函數(shù)f(x)的解析式,先確定函數(shù)的定義域,進而根據(jù)二次函數(shù)和對數(shù)函數(shù)的性質(zhì),分別判斷內(nèi),外函數(shù)的單調(diào)性,進而根據(jù)復合函數(shù)“同增異減”的原則,得到答案.
解答:函數(shù)f(x)=log0.6(6x-x2)的定義域為(0,6)
令t=6x-x2,則y=log0.6t
∵y=log0.6t為減函數(shù)
t=6x-x2的單調(diào)遞增區(qū)間是(0,3),單調(diào)遞減區(qū)間是[3,6)
故函數(shù)f(x)=log0.6(6x-x2)的單調(diào)遞增區(qū)間是(3,6)
故選C
點評:本題考查的知識點是二次函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,復合函數(shù)的單調(diào)性,其中復合函數(shù)單調(diào)性“同增異減”的原則,是解答本題的關(guān)鍵,解答時易忽略函數(shù)的定義域而錯解為:(3,+∞)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案