已知圓C:x2+y2+2mx+4y+2m2-3m=0,若過點(1,-2)可作圓的切線有兩條,則實數(shù)m的取值范圍是(  )
分析:把圓C的方程化為標準方程,表示出圓心C的坐標和半徑r,且根據(jù)被開方數(shù)大于0列出關于m的不等式,求出不等式的解集得到m的范圍,再由過點A(1,-2)可作圓的兩條切線,可得出點A在圓C外,即|AC|小于r,利用兩點間的距離公式列出關于m的不等式,求出不等式的解集得到m的范圍,找出兩解集的公共部分即可得到實數(shù)m的取值范圍.
解答:解:把圓C的方程化為標準方程得:(x+m)2+(y+2)2=-m2+3m+4,
∴圓心C坐標為(-m,-2),半徑r=
-m2+3m+4
,且-m2+3m+4>0,
∴m2-3m-4<0,即(m-4)(m+1)<0,解得:-1<m<4,
∵過點A(1,-2)可作圓的切線有兩條,
∴點A在圓外,
∴|AC|>r,即
(m+1)2+02
-m2+3m+4
,
兩邊平方,整理得:2m2-m-3>0,即(2m-3)(m+1)>0,
可化為:
2m-3>0
m+1>0
2m-3<0
m+1<0
,
解得:m>
3
2
或m<-1,又-1<m<4,
3
2
<m<4,
則實數(shù)m的取值范圍為(
3
2
,4).
故選C
點評:此題考查了圓的切線方程,涉及的知識有:圓的標準方程,二元二次方程構(gòu)成圓的條件,兩點間的距離公式,一元二次不等式的解法,其中根據(jù)過點(1,-2)可作圓的切線有兩條得出此點在圓外是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習冊答案