分析 運(yùn)用離心率公式和a,b,c 的關(guān)系,求得雙曲線方程,設(shè)出直線AB的方程,聯(lián)立雙曲線方程,求出A,B的坐標(biāo),由兩點(diǎn)的距離,即可得到△F2AB的周長(zhǎng).
解答 解:設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,
由題意可得a=1,e=$\frac{c}{a}$=2,即c=2,
b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$,
即有雙曲線的方程為x2-$\frac{{y}^{2}}{3}$=1,
過左焦點(diǎn)F1(-2,0)作傾斜角為$\frac{π}{4}$的弦AB,
設(shè)方程為y=x+2,
代入雙曲線方程可得,2x2-4x-7=0,
解得x=1±$\frac{3\sqrt{2}}{2}$,
可得A(1+$\frac{3\sqrt{2}}{2}$,3+$\frac{3\sqrt{2}}{2}$),B(1-$\frac{3\sqrt{2}}{2}$,3-$\frac{3\sqrt{2}}{2}$),F(xiàn)2(2,0),
則有△F2AB的周長(zhǎng)為|AB|+|AF2|+|BF2|=$\sqrt{(3\sqrt{2})^{2}+(3\sqrt{2})^{2}}$+$\sqrt{(1-\frac{3\sqrt{2}}{2})^{2}+(3+\frac{3\sqrt{2}}{2})^{2}}$
+$\sqrt{(1+\frac{3\sqrt{2}}{2})^{2}+(3-\frac{3\sqrt{2}}{2})^{2}}$=6+$\sqrt{19+6\sqrt{2}}$+$\sqrt{19-6\sqrt{2}}$,
可令$\sqrt{19+6\sqrt{2}}$+$\sqrt{19-6\sqrt{2}}$=t,則t2=38+2$\sqrt{1{9}^{2}-36×2}$=72,
即有△F2AB的周長(zhǎng)為6+6$\sqrt{2}$
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要考查雙曲線的離心率和方程的運(yùn)用,聯(lián)立直線方程,求得交點(diǎn),考查運(yùn)算求解能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
使用年限x | 2 | 3 | 4 | 5 |
維修費(fèi)用y | 2 | 3.4 | 5 | 6.6 |
A. | 7.2千元 | B. | 7.8千元 | C. | 8.1千元 | D. | 9.5千元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 47 | B. | 48 | C. | 49 | D. | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com