A. | 12 | B. | 8$\sqrt{3}$ | C. | 8$\sqrt{2}$ | D. | 8 |
分析 將sinA+cosA=$\frac{\sqrt{3}-1}{2}$兩邊平方,可解得sin2A=-$\frac{\sqrt{3}}{2}$,結(jié)合范圍0<A<π,可得:cosA=-$\frac{1}{2}$,由正弦定理化簡3sinB=5sinC,可得:3b=5c①,根據(jù)余弦定理可得49=b2+c2+bc②,由①②聯(lián)立可解得b,c的值,從而得解.
解答 解:∵sinA+cosA=$\frac{\sqrt{3}-1}{2}$,
∴兩邊平方,可得:1+sin2A=$\frac{4-2\sqrt{3}}{4}$,解得:sin2A=-$\frac{\sqrt{3}}{2}$,
∵0<A<π,0<2A<2π,
∴解得:A=$\frac{2π}{3}$或$\frac{5π}{6}$(由sinA+cosA=$\frac{\sqrt{3}-1}{2}$舍去),可得:cosA=-$\frac{1}{2}$,
∵3sinB=5sinC,可得:3b=5c①,
∴由a=7,根據(jù)余弦定理可得:49=b2+c2-2bccosA,
∴49=b2+c2+bc②,
∴由①②可解得:b=5,c=3,b+c=8.
故選:D.
點評 本題主要考查了二倍角的正弦函數(shù)公式,正弦定理,余弦定理的綜合應用,熟練掌握和靈活應用相關(guān)公式是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2cm | B. | 3cm | C. | 2.5cm | D. | 5cm |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com