7.函數(shù)f(x)=1-2x,x∈[1,2]的值域?yàn)閇-3,-1].

分析 利用已知條件直接求解即可.

解答 解:函數(shù)f(x)=1-2x,是減函數(shù),x∈[1,2]的值域?yàn)椋篬-3,-1].
故答案為:[-3,-1].

點(diǎn)評(píng) 本題考查函數(shù)的值域的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.給出下列表述:①求過M(1,2)與N(-3,-4)兩點(diǎn)的直線方程可先求直線MN的斜率,再利用點(diǎn)斜式方程求得;②求以A(2,2),B(2,6),C(4,4)為頂點(diǎn)的△ABC的面積可先求AB的長(zhǎng)a,再求直線AB的方程及點(diǎn)C到AB的距離h,最后利用S=$\frac{1}{2}$ah進(jìn)行計(jì)算;③判斷方程x2+x+1=0有無(wú)實(shí)數(shù)根;④植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟.其中是算法的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\sqrt{\frac{2-x}{x-3}}$的定義域?yàn)閇2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.定義[x]為不超過x的最大整數(shù),如[3.2]=3.設(shè)x=[x]+{x},則下列論斷正確的有( 。
①[-2.6]=-2;②[n+x]=n+[x]其中n∈Z;③x-{x}=x+1-{x+1};④0≤{x}<1.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果f(x+π)=f(-x),且f(-x)=f(x),則f(x)可以是( 。
A.sin2xB.cosxC.sin|x|D.|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.?dāng)?shù)列{an}的前n項(xiàng)和${S_n}=2{a_n}-3({n∈{N^*}})$,則a6=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.給出以下結(jié)論:①f(x)=2-x在R上單調(diào)遞減;②$g(x)={log_2}\frac{1+x}{1-x}$是偶函數(shù);③F(x)=f(x)f(-x)(x∈R)是偶函數(shù);④f(x)=2|x|+1既不是奇函數(shù)也不是偶函數(shù).其中正確的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.光線從點(diǎn)M (3,-2)照射到y(tǒng)軸上一點(diǎn)P(0,1)后,被y軸反射,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.(文)已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),$f(x)={3^{\frac{x}{2}}}$,則$f({{{log}_2}\frac{1}{4}})$等于( 。
A.-4B.-3C.0D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案