16.設(shè)$\overrightarrow{a}$=(3,-2,-1)是直線l的方向向量,$\overrightarrow{n}$=(1,2,-1)是平面α的法向量,則(  )
A.l⊥αB.l∥αC.l?α或l⊥αD.l∥α或l?α

分析 利用空間線面位置關(guān)系、法向量的性質(zhì)即可判斷出結(jié)論.

解答 解:∵$\overrightarrow{n}$•$\overrightarrow{a}$=3-4+1=0,
∴$\overrightarrow{n}⊥\overrightarrow{a}$.
∴l(xiāng)∥α或l?α,
故選:D.

點評 本題考查了空間線面位置關(guān)系、法向量的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知等比數(shù)列{an}的公比為正數(shù),且a1•a7=2a32,a2=2,則a1的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,則x+4y的最小值為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知空間向量$\overrightarrow{a}$=(0,$\frac{5}{4}$,-$\frac{5}{4}$),$\overrightarrow$=(x,0,-2),則“x=2”是“<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)命題p:?x0∈(-2,+∞),6+|x0|=5.命題q:?x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4.命題r:若|x|+|y|≤1,則$\frac{|y|}{|x|+2}$≤$\frac{1}{2}$.
(1)寫出命題r的否命題;
(2)判斷命題¬p,p∨r,p∧q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點M在雙曲線C1的一條漸近線上,且OM⊥MF2,若△OMF2的面積為16,且雙曲線C1與雙曲線C2:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的離心率相同,則雙曲線C1的實軸長為( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=4x,過焦點F的直線l與拋物線C交于A,B兩點,定點M(5,0).
(Ⅰ)若直線l的斜率為1,求△ABM的面積;
(Ⅱ)若△AMB是以M為直角頂點的直角三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓的短軸長是焦距的2倍,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a>0,函數(shù)$f(x)=\left\{{\begin{array}{l}{-\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}+ax-\frac{4}{3},x≤1}\\{(a-1)lnx+\frac{1}{2}{x^2}-ax,x>1}\end{array}}\right.$若f(x)在區(qū)間(-a,2a)上單調(diào)遞增,則實數(shù)a的取值范圍是(0,$\frac{10}{9}$].

查看答案和解析>>

同步練習(xí)冊答案