【題目】把邊長為2的正方形ABCD沿對角線BD折起并連接AC形成三棱錐C﹣ABD,其正視圖、俯視圖均為等腰直角三角形(如圖所示),則三棱錐C﹣ABD的表面積為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,直線與動直線的交點為,線段的中垂線與動直線的交點為.
(1)求動點的軌跡的方程;
(2)過動點作曲線的兩條切線,切點分別為, ,求證: 的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出的是計算 的值的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是( )
A.i<20
B.i>20
C.i<10
D.i>10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子裝有六張卡片,上面分別寫著如下六個函數(shù): .
(I)判斷這個函數(shù)的奇偶性;
(II)從中任意拿取兩張卡片,若其中至少有一張卡片上寫著的函數(shù)為奇函數(shù).在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為: ,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.
(1)求點的軌跡方程;
(2)設(shè)直線的斜率存在,取為,取直線的斜率為,請驗證是否為定值?若是,計算出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.
(1)求證:平面PAC⊥平面PCD;
(2)若E是PD的中點,求平面BCE將四棱錐P﹣ABCD分成的上下兩部分體積V1、V2之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓x2+4y2=4,直線l:y=x+m
(1)若l與橢圓有一個公共點,求m的值;
(2)若l與橢圓相交于P、Q兩點,且|PQ|等于橢圓的短軸長,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,則下列命題:
①若ab>c2 , 則C ;
②若a+b>2c,則C ;
③若a3+b3=c3 , 則C ;
④若(a+b)c<2ab,則ab>c2;
⑤若(a2+b2)c2<2a2b2 , 則C .
其中正確命題是(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com