6.函數(shù)y=log2x-1$\sqrt{3x-2}$的定義域是($\frac{2}{3}$,1)∪(1,+∞).

分析 根據(jù)對(duì)數(shù)函數(shù)以及二次根式的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{3x-2>0}\\{2x-1>0}\\{2x-1≠1}\end{array}\right.$,解得:x>$\frac{2}{3}$且x≠1,
故答案為:($\frac{2}{3}$,1)∪(1,+∞).

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問題,考查對(duì)數(shù)函數(shù)以及二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?x∈N*,f(n)∈N* 且f(n)≤n的否定形式是?x∈N*,f(n)∉N*或f(n)>n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:
(1)log535-2log5$\frac{7}{3}$+log57-log51.8;
(2)$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$;
(3)(1g5)2+1g2•lg50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)命題p:函數(shù)y=log2(ax-1)在區(qū)間[1,2]內(nèi)單調(diào)遞增,命題q:“?x∈R,ax2-2ax+3>0”
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知指數(shù)函數(shù)的圖象過點(diǎn)M(3,8),求f(4)、f(-4)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計(jì)算log2.56.25+lg0.01+ln$\sqrt{e}$-2${\;}^{1+lo{g}_{2}3}$
(2)已知tanα=-3,且α是第二象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{-\frac{1}{x},x<0}\end{array}\right.$,若f(a)=1,則實(shí)數(shù)a=0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|2x-1|.
(1)在答題卷該題圖中畫出y=f(x)的圖象;
(2)求不等式f(x)+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)滿足對(duì)?x∈R,f(-x)+f(x)=0,且x≥0時(shí),f(x)=ex+m(m為常數(shù)),則f(-ln5)的值為(  )
A.4B.-4C.6D.-6

查看答案和解析>>

同步練習(xí)冊(cè)答案