A. | $x=-\frac{π}{6}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{π}{2}$ |
分析 利用三角恒等變換化簡函數(shù)的解析式為 f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,由函數(shù)y=Asin(ωx+φ)的圖象變換可求函數(shù)g(x),令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,利用正弦函數(shù)的對稱性即可得解.
解答 解:f(x)=$\sqrt{3}$sinxcosx+sin2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
圖象上各點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,可得對應(yīng)的函數(shù)解析式為y=sin(x-$\frac{π}{6}$)+$\frac{1}{2}$,
再沿x軸向右平移$\frac{π}{6}$個單位,得到函數(shù)解析式為y=g(x)=sin(x-$\frac{π}{6}$-$\frac{π}{6}$)+$\frac{1}{2}$=sin(x-$\frac{π}{3}$)+$\frac{1}{2}$,
令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得:x=kπ+$\frac{5π}{6}$,k∈Z,
取k=-1,可得:x=-$\frac{π}{6}$.
故選:A.
點評 本題主要考查三角函數(shù)的恒等變換及化簡求值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,-1] | B. | [-2,-1] | C. | (-∞,-2]∪[-1,+∞) | D. | (-∞,-2)∪(-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (0,2) | C. | [-2,2] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com