設(shè)函數(shù)對(duì)任意實(shí)數(shù)x 、y都有,
(1)求的值;
(2)若,求、的值;
(3)在(2)的條件下,猜想的表達(dá)式,并用數(shù)學(xué)歸納法加以證明。
(1)0       (2)4,9,16         (3)

試題分析:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0⇒f(0)=0
(2)f(1)=1, f(2)=f(1+1)=1+1+2=4  f(3)=f(2+1)=4+1+2×2×1=9  f(4)=f(3+1)=9+1+2×3×1=16  
(3)猜想f(n)=,下用數(shù)學(xué)歸納法證明之.
當(dāng)n=1時(shí),f(1)=1滿足條件
假設(shè)當(dāng)n=k時(shí)成立,即f(k)=
則當(dāng)n=k+1時(shí)f(k+1)=f(k)+f(1)+2k=+1+2k=(k+1)
從而可得當(dāng)n=k+1時(shí)滿足條件
對(duì)任意的正整數(shù)n,都有 f(n)=
點(diǎn)評(píng):本題目主要考查了利用賦值法求解抽象函數(shù)的函數(shù)值,及數(shù)學(xué)歸納法在證明數(shù)學(xué)命題中的應(yīng)用,及利用放縮法證明不等式等知識(shí)的綜合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面內(nèi)有n(n∈Nn≥2)條直線,其中任何兩條不平行,任何三條不過(guò)
同一點(diǎn),證明:交點(diǎn)的個(gè)數(shù)f(n)=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)在其定義域上為單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若函數(shù)的圖像在處的切線的斜率為0,,已知求證:
(Ⅲ)在(2)的條件下,試比較的大小,并說(shuō)明理由.      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)曲線在點(diǎn)處的切線斜率為,且.對(duì)一切實(shí)數(shù),不等式恒成立(≠0).
(1) 求的值;
(2) 求函數(shù)的表達(dá)式;
(3) 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列,,…,,….S為其前n項(xiàng)和,求S、S、S、S,推測(cè)S公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
數(shù)列滿足.
(Ⅰ)計(jì)算,并由此猜想通項(xiàng)公式
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

利用數(shù)學(xué)歸納法證明不等式1+<f(n) (n≥2,)的過(guò)程中,由n=k變到n=k+1時(shí),左邊增加了(   )
A.1項(xiàng)B.k項(xiàng)C.項(xiàng)D.項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(n)=1++ + (n∈N*).
求證:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

請(qǐng)觀察以下三個(gè)式子:
;
;

歸納出一般的結(jié)論,并用數(shù)學(xué)歸納法證明之.

查看答案和解析>>

同步練習(xí)冊(cè)答案