已知F
1,F
2是橢圓
的左、右焦點,點P在橢圓上,且
記線段PF
1與y軸的交點為Q,O為坐標原點,若△F
1OQ與四邊形OF
2PQ的面積之比為1: 2,則該橢圓的離心率等于 ( )
由題意知點P在圓
上,由
消y得
,
又因為△F
1OQ與四邊形OF
2PQ的面積之比為1: 2,可得
,
,
,選D。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分) 已知橢圓
:
的離心率為
,
分別為橢圓
的左、右焦點,若橢圓
的焦距為2.
⑴求橢圓
的方程;
⑵設
為橢圓上任意一點,以
為圓心,
為半徑作圓
,當圓
與橢圓的右準線
有公共點時,求△
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
點
、
為橢圓
的兩個焦點,點
為
上一動點(異于橢圓的長軸的兩個端點),則△
的重心
的軌跡
是( )
A.一個橢圓,且與具有相同的離心率 |
B.一個橢圓,但與具有不同的離心率 |
C.一個橢圓(去掉長軸的兩個端點),且與具有相同的離心率 |
D.一個橢圓(去掉長軸的兩個端點),但與具有不同的離心率 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
是等腰三角形,
=
,則以
為焦點且過點
的雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
+
=1(a>b>0)上的點M (1,
)到它的兩焦點F
1,F(xiàn)
2的距離之和為4,A、B分別是它的左頂點和上頂點。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點,求|PQ|的最大值及此時直線l的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設C是橢圓:
上任意一點,A、B是焦點,則在∆ABC中有:
,類似地,點C是雙曲線
任意一點,A、B是兩焦點,則∆ABC中有____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
上一點P到它的一個焦點的距離等于3,那么點P到另一個焦點的距離等于
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
給定橢圓
:
. 稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”. 若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓
的方程和其“準圓”方程;
(2)點
是橢圓
的“準圓”上的一個動點,過動點
作直線
,使得
與橢圓
都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
中心點在原點,準線方程為
,離心率為
的橢圓方程是( )
查看答案和解析>>