(2007•深圳二模)已知雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線互相垂直,則雙曲線的離心率為( 。
分析:兩條漸近線互相垂直的雙曲線,得其是等軸雙曲線,由a=b,c=
2
a
,可求出該雙曲線的離心率.
解答:解:∵雙曲線
x2
b2
-
y2
a2
=1
的兩條漸近線互相垂直,
-
b
a
×
b
a
=-1
⇒a=b,
∴雙曲線
x2
b2
-
y2
a2
=1
是等軸雙曲線,
∴c=
2
a
,
e=
c
a
=
2
a
a
=
2

故選B.
點評:本小題主要考查雙曲線的簡單性質、等軸雙曲線等基礎知識,考查運算求解能力,考查數(shù)形結合思想,兩條漸近線互相垂直的雙曲線是等軸雙曲線這個結論是解本題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•深圳二模)如圖,已知命題:若矩形ABCD的對角線BD與邊AB和BC所成角分別為α,β,則cos2α+cos2β=1,若把它推廣到長方體ABCD-A1B1C1D1中,試寫出相應命題形式:
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳二模)已知集合M={-1,0},則滿足M∪N={-1,0,1}的集合N的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳二模)把正奇數(shù)數(shù)列{2n-1}的各項從小到大依次排成如下三角形狀數(shù)表記M(s,t)表示該表中第s行的第t個數(shù),則表中的奇數(shù)2007對應于.( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•深圳二模)某中學有高一學生400人,高二學生300人,高三學生500人,現(xiàn)用分層抽樣的方法在這三個年級中抽取120人進行體能測試,則從高三抽取的人數(shù)應為(  )

查看答案和解析>>

同步練習冊答案