20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)到左焦點(diǎn)的最大距離為$\sqrt{3}$+$\sqrt{2}$,且點(diǎn)M(1,e)在橢圓C上,其中e為橢圓C的離心率.
(1)求橢圓C的方程;
(2)如圖所示,A、B是橢圓C上的兩點(diǎn),且|AB|=$\sqrt{3}$,求△AOB的面積的取值范圍.

分析 (1)根據(jù)橢圓上的點(diǎn)到左焦點(diǎn)為F的最大距離是$\sqrt{3}$+$\sqrt{2}$,M(1,e)在橢圓上,建立方程組,即可求橢圓的方程;
(2)分類討論,設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理,表示出面積,利用配方法可求最值,從而可得結(jié)論.

解答 解:(1)由題意,$\left\{\begin{array}{l}{a+c=\sqrt{3}+\sqrt{2}}\\{\frac{1}{{a}^{2}}+\frac{{c}^{2}}{{a}^{2}^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a2=3,b2=1
∴橢圓的方程為$\frac{{x}^{2}}{3}+{y}^{2}=1$;
(2)設(shè)A(x1,y1),B(x2,y2),△ABO的面積為S.
如果AB⊥x軸,由對(duì)稱性不妨記A的坐標(biāo)為($\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}$),此時(shí)S=$\frac{1}{2}$•$\frac{\sqrt{3}}{3}•\sqrt{3}$=$\frac{3}{4}$;
如果AB不垂直于x軸,設(shè)直線AB的方程為y=kx+m,代入橢圓方程,可得x2+3(kx+m)2=3,
即(1+3k2)x2+6kmx+3m2-3=0,
又△=36k2m2-4(1+3k2)(3m2-3)>0,
∴x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$,
∴(x1-x22=(x1+x22-4x1x2=$\frac{12(1+3{k}^{2}-{m}^{2})}{(1+3{k}^{2})^{2}}$ ①,
由|AB|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$及|AB|=$\sqrt{3}$,得(x1-x22=$\frac{3}{1+{k}^{2}}$ ②,
由①②可得m2=(1+3k2)-$\frac{(1+3{k}^{2})^{2}}{4(1+{k}^{2})}$.
又原點(diǎn)O到直線AB的距離為$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
∴S=$\frac{1}{2}$•$\frac{|m|}{\sqrt{1+{k}^{2}}}$•$\sqrt{3}$,
因此S2=-$\frac{3}{16}$$(\frac{1+3{k}^{2}}{1+{k}^{2}}-2)^{2}+\frac{3}{4}$,
∵$\frac{1+3{k}^{2}}{1+{k}^{2}}=3-\frac{2}{1+{k}^{2}}∈[1,3)$,
∴$\frac{1+3{k}^{2}}{1+{k}^{2}}-2∈[-1,1)$,
則${S}^{2}∈[\frac{9}{16},\frac{3}{4}]$,
∴S$∈[\frac{3}{4},\frac{\sqrt{3}}{2}]$.
故△AOB的面積的取值范圍是$[\frac{3}{4},\frac{\sqrt{3}}{2}]$.

點(diǎn)評(píng) 本題考查橢圓的幾何性質(zhì),考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lg(2+x)+lg(2-x),
(Ⅰ)求函數(shù)f(x)的定義域及值域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列關(guān)系式中,成立的是( 。
A.${log_3}4>1>{log_{\frac{1}{3}}}10$B.${log_{\frac{1}{3}}}10>1>{log_3}4$
C.${log_3}4>{log_{\frac{1}{3}}}10>1$D.${log_{\frac{1}{3}}}10>{log_3}4>1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=2sinx$co{s}^{2}\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π處取最小-1.
(1)求φ的值;若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的單減區(qū)間;
(2)把f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位得的圖象g(x),求g(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用導(dǎo)數(shù)證明:$\frac{si{n}^{8}x}{8}$-$\frac{co{s}^{8}x}{8}$-$\frac{si{n}^{6}x}{3}$+$\frac{co{s}^{6}x}{6}$+$\frac{si{n}^{4}x}{4}$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)P($\sqrt{2}$,1),離心率e=$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn),試問:在x軸上是否存在定點(diǎn)M,使得$\overrightarrow{MA}•\overrightarrow{MB}$的值與k的取值無關(guān)?若存在,請(qǐng)求出該定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(2+x)+f(2-x)=0;且f(1)=-9,求f(2012)+f(2013)+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)復(fù)數(shù)z1,z2滿足z1z2+2iz1-2iz2+1=0,若z1,z2滿足$\overline{{z}_{2}}$-z1=2i,求z1,z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)y=3cos(kx+$\frac{π}{4}$)(k∈N+),若對(duì)任意的m∈R,在[m,m+1]之間f(x)至少取得最大值、最小值各一次,求實(shí)數(shù)k的最小值,并就最小的k值求出最小正周期及對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案