20.設x,y∈R,則“|x|+|y|>1”的一個充分條件是(  )
A.|x|≥1B.|x+y|≥1C.y≤-2D.$|x|≥\frac{1}{2}$且$|y|≥\frac{1}{2}$

分析 根據(jù)充分條件和必要條件的定義進行判斷即可.

解答 解:A.當x=1,y=0時,滿足|x|≥1時,但|x|+|y|=1>1不成立,不滿足條件.
B.當x=1,y=0時,滿足|x+y|≥1時,但|x|+|y|=1>1不成立,不滿足條件.
C.當y≤-2時,|y|≥2,則|x|+|y|>1成立,即充分性成立,滿足條件.
D.當$|x|≥\frac{1}{2}$且$|y|≥\frac{1}{2}$,則|x|+|y|≥1,等取等號時,不等式不成立,即充分性不成立,不滿足條件.
故選:C.

點評 本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知冪函數(shù)f(x)的圖象經(jīng)過點$({\frac{1}{2},8})$,則f(3)=$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某校校慶期間,大會秘書團計劃從包括甲、乙兩人在內(nèi)的七名老師中隨機選擇4名參加志愿者服務工作,根據(jù)工作特點要求甲、乙兩人中至少有1人參加,則甲、乙都被選中且列隊服務時不相鄰的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設k為常數(shù),且$cos(\frac{π}{4}-α)=k$,則用k表示sin2α的式子為sin2α=2k2-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某租車公司給出的財務報表如下:
1014年(1-12月)1015年(1-12月)1016年(1-11月)
接單量(單)144632724012512550331996
油費(元)214301962591305364653214963
平均每單油費t(元)14.8214.49
平均每單里程k(公里)1515
每公里油耗a(元)0.70.70.7
有投資者在研究上述報表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計算公式為$T=\frac{t-ak}{ak}•100%$.
(1)分別計算2014,2015年該公司的空駛率的值(精確到0.01%);
(2)2016年該公司加強了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到11月30日,空駛率在2015年的基礎(chǔ)上降低了20個百分點,問2016年前11個月的平均每單油費和平均每單里程分別為多少?(分別精確到0.01元和0.01公里)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如圖(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷能否有95%的把握認為孩子的幸福感強與是否是留守兒童有關(guān)?
幸福感強幸福感弱總計
留守兒童6915
非留守兒童18725
總計241640
(2)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
附表:
P(K2≥k00.0500.010
k03.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=cos 2x+2sin x的最大值為( 。
A.$\frac{3}{4}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別是F1,F(xiàn)2,M是雙曲線上的一點,且|MF1|=$\sqrt{3}$,|MF2|=1,∠MF1F2=30°,則該雙曲線的離心率是(  )
A.$\sqrt{3}-1$B.$\sqrt{3}+1$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$或$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

同步練習冊答案