選修4-2  矩陣與變換
T是將平面上每個點M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點M(2x,4y).圓C:x2+y2=1在變換T的作用下變成了什么圖形?

解:設(shè)P(x,y)為圓C:x2+y2=1上的任意一點,在變換T的作用下變成了P(x,y),
則x=2x,y=4y,于是,,代入圓C的方程:x2+y2=1得,即為所求的方程,是焦點在y軸的橢圓.
分析:利用T變換即可得出要求的圖形的方程,進(jìn)而根據(jù)圓錐曲線的定義即可得出.
點評:熟練掌握變換的方法和橢圓的定義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-2 矩陣與變換)已知二階矩陣M有特征值λ=6及對應(yīng)的一個特征向量e1=
.
1
1
.
,并且矩陣M對應(yīng)的變換將點(-1,2)換成(-2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值,及對應(yīng)的一個特征向量e2的坐標(biāo)之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2 矩陣與變換
已知矩陣A=
30
04
,點M(-1,-1),點N(1,1).
(1)求線段MN在矩陣A對應(yīng)的變換作用下得到的線段M'N'的長度;
(2)求矩陣A的特征值與特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,DE交AB于點F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應(yīng)變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點O與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合,
曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點.求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2 矩陣與變換.
已知二階矩陣M
1
0
=
1
0
,M
1
1
=
2
2
,求M2
1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2 矩陣與變換
已知M=
1-2
-21
,α=
3
1
,試計算M20α.

查看答案和解析>>

同步練習(xí)冊答案