已知是橢圓的左焦點(diǎn),是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)軸上,,三點(diǎn)確定的圓恰好與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在過(guò)作斜率為的直線交橢圓于兩點(diǎn),為線段的中點(diǎn),設(shè)為橢圓中心,射線交橢圓于點(diǎn),若,若存在求的值,若不存在則說(shuō)明理由.

 

 

【答案】

20、解:

 

 

 

將(1)代入(2)可得:

(3+4k2)x2+8k2x+(4k2-12)=0      2’

3×64k4+4×36k2=12(4k2+3)2

64k4+48k2=4(16k4+24k2+9)

48k2=96k2+36         2’

-48k2=36

∴k無(wú)解

∴不存在

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題13分)已知橢圓的方程是,點(diǎn)分別是橢圓的長(zhǎng)軸的左、右端點(diǎn),

左焦點(diǎn)坐標(biāo)為,且過(guò)點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知是橢圓的右焦點(diǎn),以為直徑的圓記為圓,試問(wèn):過(guò)點(diǎn)能否引圓的切線,若能,求出這條切線與軸及圓的弦所對(duì)的劣弧圍成的圖形的面積;若不能,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省鄒城一中10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知是橢圓的左、右焦點(diǎn),過(guò)點(diǎn)
傾斜角為的動(dòng)直線交橢圓于兩點(diǎn).當(dāng)時(shí),,且
(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;
(2)求△面積的最大值,并求出使面積達(dá)到最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省揭陽(yáng)市高三學(xué)業(yè)水平考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

1求橢圓的離心率;

2設(shè)軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線的位置關(guān)系;

3設(shè)直線交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知是橢圓的左焦點(diǎn), 是橢圓上的一點(diǎn), 軸,  (為原點(diǎn)), 則該橢圓的離心率是(    )

A.       B.       C.         D.

查看答案和解析>>

同步練習(xí)冊(cè)答案