19.在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面積的最大值為$\sqrt{3}$,則此時△ABC的形狀為( 。
A.銳角三角形B.直線三角形C.等腰三角形D.正三角形

分析 由 $\sqrt{3}$(acosB+bcosA)=2csinC及正弦定理可得 $\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,結(jié)合sinC>0,化簡可得sinC=$\frac{\sqrt{3}}{2}$,由a+b=4,利用基本不等式可得ab≤4,(當(dāng)且僅當(dāng)a=b=2成立),由△ABC的面積的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,即可解得a=b=2,從而得解△ABC的形狀為等腰三角形.

解答 解:∵$\sqrt{3}$(acosB+bcosA)=2csinC,
∴$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sinC=2sin2C,且sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵a+b=4,可得:4≥2 $\sqrt{ab}$,解得:ab≤4,(當(dāng)且僅當(dāng)a=b=2成立)
∵△ABC的面積的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴a=b=2,
∴則此時△ABC的形狀為等腰三角形.
故選:C.

點評 本題主要考查了正弦定理,三角形面積公式,基本不等式的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

執(zhí)行右邊的程序框圖,則輸出的等于( )

A.4 B.5 C.6 D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1的兩個不同的動點.
①存在M,N兩點,使BP⊥DQ;
②體對角線BD1垂直平面DPQ;
③若|PQ|=1,S△BPD∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$];
④若|PQ|=1,則四面體BDPQ在平面ABCD上的正投影面積為定值;
⑤若|PQ|=1,則四面體BDPQ的體積隨著線段PQ移動而變化;
以上命題為真命題的有①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.我們通常把圓、橢圓、拋物線、雙曲線統(tǒng)稱為圓錐曲線.通過普通高中課程實驗教科書《數(shù)學(xué)》2-1第二章《圓錐曲線與方程》章頭引言我們知道,用一個垂直于圓錐的軸的平面截圓錐,截口曲線(截面與圓錐側(cè)面的交線)是一個圓.實際上,設(shè)圓錐母線與軸所成角為α,不過圓錐頂點的截面與軸所成角為θ.當(dāng)θ=$\frac{π}{2}$,截口曲線為圓,當(dāng)$α<θ<\frac{π}{2}$時,截口曲線為橢圓;當(dāng)0≤θ<α?xí)r,截口曲線為雙曲線; 當(dāng)θ=α?xí)r,截口曲線為拋物線;如圖2,正方體ABCD-A′B′C′D′中,M為BC邊的中點,點P在底面A′B′C′D′上運動并且使∠MAC′=∠PAC′,那么點P的軌跡是( 。
A.一段雙曲線弧B.一段橢圓弧C.一段圓弧D.一段拋物線弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.甲、乙等5名選手被隨即分配到A、B、C、D四個不同的項目中,每個項目至少有一人,則甲乙兩人同時參加A項目的概率為$\frac{1}{40}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.袋中裝有大小相同,顏色不同的10張卡片,其中紅色卡片5張,白色卡片3張,藍色卡片2張,現(xiàn)從中隨機抽取一張卡片,確定顏色后再放回袋中,若取出的是白色卡片,則不再抽取,否則,繼續(xù)抽取卡片,但最多抽取3次.
(Ⅰ)記“恰好取到2次紅色卡片”為事件A,求P(A);
(Ⅱ)將抽取卡片的次數(shù)記為ξ,求隨機變量ξ的概率分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線$l:ρsin(θ-\frac{π}{4})=4$和圓$C:ρ=2k•cos(θ+\frac{π}{4})(k≠0)$,直線上的點到圓C上的點的最小距離等于2
(1)求直線L的直角坐標(biāo)方程;
(2)求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在極坐標(biāo)系中,已知兩點A(3,$\frac{5π}{3}$),B(1,$\frac{2π}{3}$),則A,B 兩點間的距離等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,已知點G是△ABC的重心,過點G作直線與AB,AC兩邊分別交于M,N兩點,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,則x+y的最小值為( 。
A.2B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案