0<a≤數(shù)學公式是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為減函數(shù)的______條件.


  1. A.
    充分不必要
  2. B.
    必要不充分
  3. C.
    充要
  4. D.
    既不充分也不必要
A
分析:對a進行討論,當a=0時,函數(shù)為一次函數(shù),當a≠0時,函數(shù)為二次函數(shù),此時分兩種情況,當a>0時,函數(shù)開口向上,先減后增,當a<0時,函數(shù)開口向下,先增后減,求出函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上的減函數(shù)的充要條件再進行判斷即可.
解答:(1)當a=0時,函數(shù)為一次函數(shù)f(x)=-2x+2為遞減函數(shù),
(2)當a>0時,二次函數(shù)開口向上,先減后增,故函數(shù)對稱軸為x=,解得;
當a<0時,函數(shù)開口向下,先增后減,
函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上不可能為減函數(shù),故舍去.
故函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上的減函數(shù)的充要條件為0≤a≤
由0<a≤能推出0≤a≤,但由0<a≤不能推出0≤a≤,
故0<a≤是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為減函數(shù)的充分不必要條件.
故選A.
點評:本題考查二次函數(shù)的性質(zhì)、函數(shù)單調(diào)性和對稱軸、充要條件的判斷,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a是函數(shù)f(x)=x3-log
12
x的零點,若0<x0<a,則f(x0
 
0.(填“<”,“=”,“>”).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省石家莊市元氏一中高三(上)第一次月考數(shù)學試卷(解析版) 題型:選擇題

0<a≤是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為減函數(shù)的( )條件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源:2013年浙江省杭州市重點高中高考命題比賽數(shù)學參賽試卷13(理科)(解析版) 題型:選擇題

0<a≤是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為減函數(shù)的( )條件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省自貢市高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

給出下列5個命題:
①0<a≤是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為單調(diào)減函數(shù)的充要條件;
②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉移軌道飛向月球,在月球附近一點P進入以月球球心F為一個焦點的橢圓軌道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道II繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長軸的長,則有c1a2>a1c2;
③函數(shù)y=f(x)與它的反函數(shù)y=f-1(x)的圖象若相交,則交點必在直線y=x上;
④己知函數(shù)f(x)=loga(1-ax)在(O,1)上滿足,f′(x)>0,貝U>1+a>
⑤函數(shù)f(x)=(x≠kπ+),k∈Z,/為虛數(shù)單位)的最小值為2;
其中所有真命題的代號是   

查看答案和解析>>

同步練習冊答案