【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調(diào)增函數(shù).

①求最大整數(shù)值;

②證明: .

【答案】(1);(2)①2;②見解析.

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點(diǎn)斜式求切線方程(2)①先轉(zhuǎn)化條件為恒成立,再根據(jù),得當(dāng)時, 恒成立.最后舉反例說明當(dāng)時, 不恒成立.②對應(yīng)要證不等式,在中取,得,再根據(jù)等比數(shù)列求和公式得左邊和為,顯然.

試題解析:(1)當(dāng)時, ,∴

,∴

則所求切線方程為,即.

(2)由題意知, ,

若函數(shù)在定義域上為單調(diào)增函數(shù),則恒成立.

①先證明.設(shè),則

則函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

,即.

同理可證,∴,∴.

當(dāng)時, 恒成立.

當(dāng)時, ,即不恒成立.

綜上所述, 的最大整數(shù)值為2.

②由①知, ,令

,∴.

由此可知,當(dāng)時, .當(dāng)時, ,

當(dāng)時, , ,當(dāng)時, .

累加得.

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·北京)某校老年、中年和青年教師的人數(shù)見下表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本
中,青年教師有320人,則該樣本的老年教師人數(shù)為( )

A.90
B.100
C.180
D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當(dāng)a=1時,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范圍;
(3)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),函數(shù)的導(dǎo)函數(shù)為.

(1)求函數(shù)的極值.

(2)若.

(i)求函數(shù)的單調(diào)區(qū)間;

(ii)求證: 時,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知

(1)設(shè)上的一點(diǎn),證明:平面平面

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: =1(a>b>0)過點(diǎn)(0,4),離心率為
(1)求橢圓C的方程;
(2)求過點(diǎn)(3,0)且斜率為 的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)同時滿足以下條件:①上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③處的切線與直線垂直.

(1)取函數(shù)的解析式;

(2)設(shè),若存在實(shí)數(shù),使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a,b,c分別為角A,B,C所對的邊,且 a=2csinA.
(1)確定角C的大;
(2)若c=3,且△ABC的面積為 ,求a2+b2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是函數(shù)f(x)的導(dǎo)函數(shù),如果 是二次函數(shù), 的圖象開口向上,頂點(diǎn)坐標(biāo)為(1, ) ,那么曲線f(x)上任一點(diǎn)處的切線的傾斜角 的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案