不等式|x-3|-|2x|≥0的解集為
 
考點(diǎn):絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:由不等式可得 ①
x<0
x+3≥0
,或②
0≤x<3
3-3x≥0
,或③
x≥3
-x-3≥0
.分別求得①、②、③的解集,再取并集,即得所求.
解答: 解:由不等式可得 ①
x<0
x+3≥0
,或②
0≤x<3
3-3x≥0
,或③
x≥3
-x-3≥0

解①求得-3≤x<0,解②求得0≤x<1,解③求得x∈∅.
綜上可得,不等式的解集為[-3,1],
故答案為:[-3,1].
點(diǎn)評:本題主要考查絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化及分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知,在△ABC中,D是AB上一點(diǎn),△ACD的外接圓交BC于點(diǎn)E,AB=2BE.
(Ⅰ)求證:BC=2BD;
(Ⅱ)若CD平分∠ACB,且AC=2,EC=1,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(cosx+sinx)(cosx-sinx).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若0<α<
π
2
,0<β<
π
2
,且f(
α
2
)=
1
3
,f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)-1+3i、cosα+isinα(0<α<
π
2
,i是虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)依次為A、B,點(diǎn)O是坐標(biāo)原點(diǎn).
(1)若OA⊥OB,求tanα的值;
(2)若B點(diǎn)的橫坐標(biāo)為
4
5
,求S△AOB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班50位同學(xué),期中考試成績?nèi)柯湓赱90,150]上,將成績分成6組:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],加以統(tǒng)計(jì),得到如圖所示的部分頻率分布直方圖.
(Ⅰ)求成績在[110,120)上的學(xué)生人數(shù),并將頻率分布直方圖補(bǔ)充完整;
(Ⅱ)從成績不低于130的學(xué)生中隨機(jī)抽取兩名,求至少一名學(xué)生的成績不低于140的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O與棱長為2的正方體ABCD-A1B1C1D1的各棱都相切,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1,x>0
0,x=0
-1,x<0
,若函數(shù)f(x)=2x•g(lnx)+1-x2,則該函數(shù)的零點(diǎn)個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,AB=3,CD=4.過AC與BD的交點(diǎn)O作EF∥AB,分別交AD,BC于點(diǎn)E,F(xiàn),則EF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的∠BAC的平分線與BC相交于點(diǎn)D,△ABC的外接圓的切線AE與BC的延長線相交于點(diǎn)E,若EB=8,EC=2,則ED=
 

查看答案和解析>>

同步練習(xí)冊答案