【題目】已知{an}是等差數(shù)列,滿足a1=3,a5=15,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}(n∈N+)是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,由題意得
所以 .
設(shè)等比數(shù)列{bn﹣an}的公比為q,由題意得 ,解得q=2.
所以 . 從而
(2)解:由(1)知 .
數(shù)列{3n}的前n項(xiàng)和為 .
數(shù)列{2n﹣1}的前n項(xiàng)和為 .
所以,數(shù)列{bn}的前n項(xiàng)和為
【解析】(1)根據(jù)等差數(shù)列通項(xiàng)公式,求得d=3,寫出等差數(shù)列{an}通項(xiàng)公式,{bn﹣an}(n∈N+)是等比數(shù)列,得 ,求得q, 即可寫出{bn}的通項(xiàng)公式 ,(2)根據(jù) ,分別求等差數(shù)列和等比數(shù)列的前n項(xiàng)和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識,掌握通項(xiàng)公式:或,以及對數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,底面為矩形, , , , , 為棱上一點(diǎn),平面與棱交于點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求證: ;
(Ⅲ)若,試問平面是否可能與平面垂直?若能,求出值;若不能,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: ()的右焦點(diǎn)為F(2,0),且過點(diǎn)P(2, ). 直線過點(diǎn)F且交橢圓C于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)若線段AB的垂直平分線與x軸的交點(diǎn)為M(),求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)是原點(diǎn),以軸為對稱軸,且經(jīng)過點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn), 在拋物線上,直線, 分別與軸交于點(diǎn), , .求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求函數(shù)的零點(diǎn)個數(shù);
(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)+2x>0的解集為(1,3).
(1)若方程f(x)+6a=0有兩個相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與圓 且與橢圓相交于兩點(diǎn).
(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長
(2)設(shè)直線的斜率分別為,判斷是否為定值,并說明理由
(3)求,面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com