以Φ(x)表示標準正態(tài)總體在區(qū)間(-∞,x)內(nèi)取值的概率,設隨機變量ξ服從標準正態(tài)分布N(0,1),已知Φ(-1.96)=0.026,則P(|ξ|<1.96)=   
【答案】分析:解法一:根據(jù)變量符合正態(tài)分布,且對稱軸是x=0,得到P(|ξ|<1.96)=P(-1.96<ξ<1.96),應用所給的Φ(-1.96)=0.026,條件得到結果,
解法二:本題也可以這樣解根據(jù)曲線的對稱軸是直線x=0,得到一系列對稱關系,代入條件得到結果.
解答:解:解法一:∵ξ~N(0,1)
∴P(|ξ|<1.96)
=P(-1.96<ξ<1.96)
=Φ(1.96)-Φ(-1.96)
=1-2Φ(-1.96)
=0.948
解法二:因為曲線的對稱軸是直線x=0,
所以由圖知P(ξ>1.96)=P(ξ≤-1.96)=Φ(-1.96)=0.026
∴P(|ξ|<1.96)=1-0.26-0.26=0.948
故答案為:0.948.
點評:本題考查正態(tài)曲線的特點及曲線所表示的意義,主要考查對稱性,是一個數(shù)形結合的問題,是一個遇到一定要得分數(shù)的題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以Φ(x)表示標準正態(tài)總體在區(qū)間(-∞,x)內(nèi)取值的概率,若隨機變量ξ服從正態(tài)分布N(μ,σ2),則概率P(|ξ-μ|<σ)等于( 。
A、Φ(μ+σ)-Φ(μ-σ)
B、Φ(1)-Φ(-1)
C、Φ(
1-μ
σ
)
D、2Φ(μ+σ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

11、以Φ(x)表示標準正態(tài)總體在區(qū)間(-∞,x)內(nèi)取值的概率,設隨機變量ξ服從標準正態(tài)分布N(0,1),已知Φ(-1.96)=0.026,則P(|ξ|<1.96)=
0.948

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以∅(x)表示標準正態(tài)總體在區(qū)間(-∞,x)內(nèi)取值的概率,若隨機變量ξ服從正態(tài)分布N(μ,σ2),則概率P(|ξ-μ|<σ)=
2Φ(1)-1
2Φ(1)-1

查看答案和解析>>

科目:高中數(shù)學 來源:安徽 題型:單選題

以Φ(x)表示標準正態(tài)總體在區(qū)間(-∞,x)內(nèi)取值的概率,若隨機變量ξ服從正態(tài)分布N(μ,σ2),則概率P(|ξ-μ|<σ)等于( 。
A.Φ(μ+σ)-Φ(μ-σ)B.Φ(1)-Φ(-1)C.Φ(
1-μ
σ
)
D.2Φ(μ+σ)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學精品復習23:概率與統(tǒng)計(解析版) 題型:選擇題

以Φ(x)表示標準正態(tài)總體在區(qū)間(-∞,x)內(nèi)取值的概率,若隨機變量ξ服從正態(tài)分布N(μ,σ2),則概率P(|ξ-μ|<σ)等于( )
A.Φ(μ+σ)-Φ(μ-σ)
B.Φ(1)-Φ(-1)
C.
D.2Φ(μ+σ)

查看答案和解析>>

同步練習冊答案