雙曲線的離心率為,則它的漸近線方程是(     )
A.B.C.D.
A
分析:根據(jù)題意,得雙曲線的漸近線方程為y=±x.再由雙曲線離心率為,得到c=a,由定義知b= =a,代入即得此雙曲線的漸近線方程.
解答:解:∵雙曲線C方程為:(a>0,b>0)
∴雙曲線的漸近線方程為y=±x
又∵雙曲線離心率為,
∴c=a,可得b==a
因此,雙曲線的漸近線方程為y=±x
故答案為A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

點M到(3,0)的距離比它到直線ⅹ+4=0的距離小1,則點M的軌跡方程為(   )
A.y²=12ⅹB.y²=12ⅹ(ⅹ?0)
C.y²=6ⅹD.y²=6ⅹ(ⅹ?0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 已知拋物線的準線為,焦點為,圓的圓心在軸的正半軸上,且與軸相切,過原點作傾斜角為的直線,交于點,交圓于另一點,且
(1)求圓和拋物線C的方程;
(2)若為拋物線C上的動點,求的最小值;
(3)過上的動點Q向圓作切線,切點為S,T,
求證:直線ST恒過一個定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,且橢圓過點.
(1)求橢圓的方程;
(2)若為橢圓上的動點,為橢圓的右焦點,以為圓心,長為半徑作圓,過點作圓的兩條切線,(為切點),求點的坐標,使得四邊形的面積最大.]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,則當在此橢圓上存在不同兩點關于直線對稱時的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)已知橢圓,其相應于焦點的準線方
程是;
(1)求橢圓的方程;
(2)已知過點傾斜角為的直線交橢圓兩點,求弦的長度。
(3)過點作兩條互相垂直的直線分別交橢圓于點,求
的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知過拋物線的焦點,斜率為的直線交拋物線于)兩點,且
(1)求該拋物線的方程
(2)為坐標原點,為拋物線上一點,若,求的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)如圖所示,已知橢圓和拋物線有公共焦點, 的中心和的頂點都在坐標原點,過點的直線與拋物線分別相交于兩點
(1)寫出拋物線的標準方程;
(2)若,求直線的方程;
(3)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a、b、c分別為雙曲線的實半軸長、虛半軸長、半焦距,且方程無實根,則雙曲線離心率的取值范圍是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案