設函數(shù)f(x)=ex-x(e為自然對數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當x∈R時,ex≥x+1.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值,利用導數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導數(shù)的綜合應用
分析:(1)先求導數(shù),然后根據(jù)導數(shù)的正負,可得函數(shù)的單調(diào)性;
(2)研究函數(shù)的極值點,連續(xù)函數(shù)f(x)在區(qū)間(a,b)內(nèi)只有一個極值,那么極小值就是最小值,即可證明結論.
解答: (1)解:的導數(shù)f′(x)=ex-1
令f′(x)>0,解得x>0;令f′(x)<0,解得x<0.
從而f(x)在(-∞,0)內(nèi)單調(diào)遞減,在(0,+∞)內(nèi)單調(diào)遞增;
(2)證明:由(1)知當x=0時,f(x)取得最小值1,
∴ex-x≥1,
∴當x∈R時,ex≥x+1.
點評:本題主要考查了函數(shù)的單調(diào)性,考查利用導數(shù)求閉區(qū)間上函數(shù)的最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c,且f(x)在x=1處取得極值.
(Ⅰ)求b的值;
(Ⅱ)若當x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍;
(Ⅲ)對任意的x1,x2∈[-1,2],|f(x1)-f(x2)|≤
7
2
是否恒成立?如果成立,給出證明,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若正方形ABCD的一個頂點A(3,2),BC邊所在直線方程是x+y-3=0,試求此正方形的其余三邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(2x+3)+x2
(1)討論f(x)的單調(diào)性;
(2)求f(x)=ln(2x+3)+x2在區(qū)間[-
3
4
,
1
4
]
上的最大值與最小值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,A(1,3),AB、AC邊上中線方程分別為x-2y+1=0,y-1=0,求頂點B、C兩點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程為
x=2cosθ
y=
2
sinθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=
2
2
t
y=
2
2
t+
2
(t為參數(shù)),且曲線C1與C2相交于A,B兩點.
(1)求曲線C1,C2的普通方程;
(2)若點F(
2
,0),求△FAB的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示(單位:cm),四邊形ABCD為直角梯形,求圖形中陰影部分繞AB旋轉(zhuǎn)一周所成的幾何體的表面積和體積,并畫出該幾何體的三視圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
(x-1)2
+aln(x-1),a為常數(shù).
(1)判斷f(x)的單調(diào)性,并寫出單調(diào)區(qū)間.
(2)當a=1時,證明:對x≥2的函數(shù)f(x)圖象不可能在直線y=x-1上方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩地相距S千米,汽車從甲地勻速行駛到乙,速度不得超過c千米/小時,已知汽車每小時的運輸成本由可變部分和固定部分組成:可變部分與速度v(單位:千米/小時)的平方成正比,比例系數(shù)為b,固定部分為a元,為使全程運輸成本最小,汽車應以多大速度行駛?

查看答案和解析>>

同步練習冊答案