4.橢圓的短軸長為6,焦距為8,則它的長軸長等于10.

分析 由已知條件可求出b,c的值,代入a2=b2+c2即可求出a的值,則答案可求.

解答 解:橢圓的短軸為6,則2b=6,b=3,焦距為8,則2c=8,c=4,
又a2=b2+c2=25,
∴a=5.
則它的長軸長等于2a=10.
故答案為:10.

點評 本題考查了橢圓的標準方程,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)f(x)=sinxcosx+sin2x-$\frac{1}{2}$.
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)把y=f(x)的圖象向左平移$\frac{π}{24}$個單位,得到函數(shù)y=g(x)的圖象,求y=g(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,在等腰梯形CDEF中,DE=CD=$\sqrt{2}$,EF=2+$\sqrt{2}$,將它沿著兩條高AD,CB折疊成如圖(2)所示的四棱錐E-ABCD(E,F(xiàn)重合).
(1)求證:BE⊥DE;
(2)設(shè)點M為線段AB的中點,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.“x>-2”是“(x+2)(x-3)<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.△ABC兩個頂點A、B的坐標分別是(-1,0)、(1,0),邊AC、BC所在直線的斜率之積是-4.
(1)求頂點C的軌跡方程;
(2)求直線2x-y+1=0被此曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在空間中,下列命題中不正確的是(  )
A.若兩個平面有一個公共點,則它們有無數(shù)個公共點
B.任意兩條直線能確定一個平面
C.若點A既在平面α內(nèi),又在平面β內(nèi),則α與β相交于直線b,且點A在直線b上
D.若已知四個點不共面,則其中任意三點不共線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,且2bcosC-3ccosB=a,則tan(B-C)的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.命題p:“?x∈R,x2+2<0”,則¬p為( 。
A.?x∈R,x2+2≥0B.?x∉R,x2+2<0C.?x∈R,x2+2≥0D.?x∈R,x2+2>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)復(fù)數(shù)Z滿足$Z=\frac{1+3i}{1-i}$,則Z的共軛復(fù)數(shù)為( 。
A.1+2iB.-1+2iC.1-2iD.-1-2i

查看答案和解析>>

同步練習冊答案