如圖,已知AB是圓O的直徑,AB=4,C為圓上任意一點(diǎn),過(guò)C點(diǎn)做圓的切線分別與過(guò)A,B兩點(diǎn)的切線交于P,Q點(diǎn),則CP•CQ=________.

4
分析:連接OP,OQ,先證明△OAP≌△OCP,可得∠AOP=∠COP,同理,∠COQ=∠BOQ,所以∠POQ=90°,再證明△OCP∽△QCO
,可得,從而CP•CQ=OC2,故可解.
解答:連接OP,OQ,
∵PA,PC為圓O的切線,

∴PA=PC
在△OAP和△OCP中
∵PA=PC,OP=OP,OA=OC
∴△OAP≌△OCP
∴∠AOP=∠COP
同理,∠COQ=∠BOQ
∴∠POQ=90°
∵OC⊥PQ
∴△OCP∽△QCO

∴CP•CQ=OC2
∵AB=4,
∴OC=2
∴CP•CQ=4
故答案為:4
點(diǎn)評(píng):本題以圓為載體,考查圓的切線,考查三角形的全等與相似,解題的關(guān)鍵是正確運(yùn)用圓的切線的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•西城區(qū)一模)如圖,已知AB是圓O的直徑,P在AB的延長(zhǎng)線上,PC切圓O于點(diǎn)C,CD⊥OP于D.若CD=6,CP=10,則圓O的半徑長(zhǎng)為
15
2
15
2
;BP=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•東城區(qū)模擬)如圖,已知AB是圓O的直徑,AB=4,C為圓上任意一點(diǎn),過(guò)C點(diǎn)做圓的切線分別與過(guò)A,B兩點(diǎn)的切線交于P,Q點(diǎn),則CP•CQ=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知AB是圓O的直徑,P在AB的延長(zhǎng)線上,PC切圓O于點(diǎn)C,CD⊥OP于D.若CD=6,CP=10,則圓O的半徑長(zhǎng)為_(kāi)_______;BP=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0104 模擬題 題型:證明題

如圖,已知AB是圓O的直徑,C,D是圓上兩點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG,
(1)求證:C是弧BD的中點(diǎn);
(2)求證:BF=FG。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知AB是圓O的直徑,AB=4,C為圓上任意一點(diǎn),過(guò)C點(diǎn)做圓的切線分別與過(guò)A,B兩點(diǎn)的切線交于P,Q點(diǎn),則CP•CQ=   

查看答案和解析>>

同步練習(xí)冊(cè)答案