10.已知兩條直線m,n和平面α,那么下列命題中的真命題為(  )
A.若m∥n,n?α,則m∥αB.若m⊥n,n?α,則m⊥α
C.若m∥n,n?α,m?α,則m∥αD.若m⊥n,n?α,m?α,則m⊥α

分析 利用線面平行、垂直的判定定理,即可得出結(jié)論.

解答 解:線面平行的判定定理中要求直線m?α,所以A錯誤;
線面垂直的判定定理中要求直線m垂直于平面中的兩條相交直線,所以B錯誤;
由線面平行的判定定理,可得C正確;
由線面垂直的判定定理,可得D不正確.
故選:C.

點評 本題主要考查空間直線和平面的位置關(guān)系的判斷,要求熟練掌握相應(yīng)的判定定理和性質(zhì)定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若1og23=a,5b=2,試用a,b表示log245=$2a+\frac{1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知sin($\frac{π}{6}$-a)=$\frac{3}{5}$,則sin($\frac{π}{6}$+2a)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)x>-3時,不等式a≤x+$\frac{2}{x+3}$恒成立,則a的取值范圍是2$\sqrt{2}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若方程x2-x+m=0有兩個不等正根,則實數(shù)m的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知角α的終邊經(jīng)過點P(0,1),則tanα=( 。
A.0B.-4C.4D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖是$y=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的圖象,則其解析式為$y=2sin(x+\frac{π}{6})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1-cosα}\\{y=sinα}\end{array}\right.$(α位參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸,建立的極坐標(biāo)系中,曲線C2的方程為ρ=2sinθ.
(1)求C1和C2的普通方程;
(2)求C1和C2公共弦的垂直平分線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:x2+y2-4x+2y=0與圓C2:x2+y2-2y=0相交于A,B兩點.
(1)求過A,B兩點且圓心在直線2x+y=2上的圓C的方程;
(2)設(shè)P,Q是圓C上兩點,且滿足|OP|•|OQ|=1,求坐標(biāo)原點到直線PQ的距離.

查看答案和解析>>

同步練習(xí)冊答案