【題目】《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A.錢
B.錢
C.錢
D.錢
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), (其中, ),且函數(shù)的圖象在點處的切線與函數(shù)的圖象在點處的切線重合.
(1)求實數(shù), 的值;
(2)記函數(shù),是否存在最小的正常數(shù),使得當時,對于任意正實數(shù),不等式恒成立?給出你的結論,并說明結論的合理性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當 時,不等式 恒成立,則實數(shù)a的取值范圍是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別為AA1、AB、BB1、B1C1的中點,則異面直線EF與GH所成的角等于( )
A.45°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的離心率為,直線: 與以原點為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)過橢圓的左頂點作直線,與圓相交于兩點, ,若是鈍角三角形,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,內角A,B,C所對的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且S△ABC= ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線和定點, 是此曲線的左、右焦點,以原點為極點,以軸正半軸為極軸,建立極坐標系.
(1)求直線的極坐標方程;
(2)經過點且與直線垂直的直線交此圓錐曲線于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是( )
A.90cm2
B.129cm2
C.132cm2
D.138cm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com